7461 lines
357 KiB
Plaintext
7461 lines
357 KiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "vsX0L1sG1iZj"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Capstone Project\n",
|
|||
|
"## Neural translation model\n",
|
|||
|
"### Instructions\n",
|
|||
|
"\n",
|
|||
|
"In this notebook, you will create a neural network that translates from English to German. You will use concepts from throughout this course, including building more flexible model architectures, freezing layers, data processing pipeline and sequence modelling.\n",
|
|||
|
"\n",
|
|||
|
"This project is peer-assessed. Within this notebook you will find instructions in each section for how to complete the project. Pay close attention to the instructions as the peer review will be carried out according to a grading rubric that checks key parts of the project instructions. Feel free to add extra cells into the notebook as required.\n",
|
|||
|
"\n",
|
|||
|
"### How to submit\n",
|
|||
|
"\n",
|
|||
|
"When you have completed the Capstone project notebook, you will submit a pdf of the notebook for peer review. First ensure that the notebook has been fully executed from beginning to end, and all of the cell outputs are visible. This is important, as the grading rubric depends on the reviewer being able to view the outputs of your notebook. Save the notebook as a pdf (you could download the notebook with File -> Download .ipynb, open the notebook locally, and then File -> Download as -> PDF via LaTeX), and then submit this pdf for review.\n",
|
|||
|
"\n",
|
|||
|
"### Let's get started!\n",
|
|||
|
"\n",
|
|||
|
"We'll start by running some imports, and loading the dataset. For this project you are free to make further imports throughout the notebook as you wish. "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 2,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "2VyTvxPN1iZn"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import tensorflow as tf\n",
|
|||
|
"import tensorflow_hub as hub\n",
|
|||
|
"import unicodedata\n",
|
|||
|
"import re\n",
|
|||
|
"from tensorflow.keras.preprocessing.text import Tokenizer\n",
|
|||
|
"import numpy as np\n",
|
|||
|
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
|
|||
|
"from IPython.display import Image\n",
|
|||
|
"from sklearn.model_selection import train_test_split\n",
|
|||
|
"from tensorflow.keras.layers import Layer,Input,Masking,LSTM,Embedding,Dense\n",
|
|||
|
"from tensorflow.keras import Model\n",
|
|||
|
"import time\n",
|
|||
|
"from tqdm import tqdm_notebook as tqdm\n",
|
|||
|
"import warnings\n",
|
|||
|
"warnings.simplefilter(\"ignore\")\n",
|
|||
|
"from prettytable import PrettyTable\n",
|
|||
|
"import matplotlib.pyplot as plt\n",
|
|||
|
"%matplotlib inline"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "wuIi4lAR1iZt"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"For the capstone project, you will use a language dataset from http://www.manythings.org/anki/ to build a neural translation model. This dataset consists of over 200,000 pairs of sentences in English and German. In order to make the training quicker, we will restrict to our dataset to 20,000 pairs. Feel free to change this if you wish - the size of the dataset used is not part of the grading rubric.\n",
|
|||
|
"\n",
|
|||
|
"Your goal is to develop a neural translation model from English to German, making use of a pre-trained English word embedding module."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "pi9Dq6vv3FVO"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"#### Import the data\n",
|
|||
|
"\n",
|
|||
|
"The dataset is available for download as a zip file at the following link:\n",
|
|||
|
"\n",
|
|||
|
"https://drive.google.com/open?id=1KczOciG7sYY7SB9UlBeRP1T9659b121Q\n",
|
|||
|
"\n",
|
|||
|
"You should store the unzipped folder in Drive for use in this Colab notebook."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 3,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 35
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "Nw99tEEQ3bKL",
|
|||
|
"outputId": "8032cf5c-0d46-4cbc-e357-0a6f2a259c85"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount(\"/content/gdrive\", force_remount=True).\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# Run this cell to connect to your Drive folder\n",
|
|||
|
"\n",
|
|||
|
"from google.colab import drive\n",
|
|||
|
"drive.mount('/content/gdrive')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "o8PetPpw1iZu"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# Run this cell to load the dataset\n",
|
|||
|
"\n",
|
|||
|
"NUM_EXAMPLES = 20000\n",
|
|||
|
"data_examples = []\n",
|
|||
|
"with open('/content/gdrive/My Drive/deu.txt', 'r', encoding='utf8') as f:\n",
|
|||
|
" for line in f.readlines():\n",
|
|||
|
" if len(data_examples) < NUM_EXAMPLES:\n",
|
|||
|
" data_examples.append(line)\n",
|
|||
|
" else:\n",
|
|||
|
" break"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 5,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "JumLjJ631iZy"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# These functions preprocess English and German sentences\n",
|
|||
|
"\n",
|
|||
|
"def unicode_to_ascii(s):\n",
|
|||
|
" return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn')\n",
|
|||
|
"\n",
|
|||
|
"def preprocess_sentence(sentence):\n",
|
|||
|
" sentence = sentence.lower().strip()\n",
|
|||
|
" sentence = re.sub(r\"ü\", 'ue', sentence)\n",
|
|||
|
" sentence = re.sub(r\"ä\", 'ae', sentence)\n",
|
|||
|
" sentence = re.sub(r\"ö\", 'oe', sentence)\n",
|
|||
|
" sentence = re.sub(r'ß', 'ss', sentence)\n",
|
|||
|
" \n",
|
|||
|
" sentence = unicode_to_ascii(sentence)\n",
|
|||
|
" sentence = re.sub(r\"([?.!,])\", r\" \\1 \", sentence)\n",
|
|||
|
" sentence = re.sub(r\"[^a-z?.!,']+\", \" \", sentence)\n",
|
|||
|
" sentence = re.sub(r'[\" \"]+', \" \", sentence)\n",
|
|||
|
" \n",
|
|||
|
" return sentence.strip()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "XFJap-TW1iZ2"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"#### The custom translation model\n",
|
|||
|
"The following is a schematic of the custom translation model architecture you will develop in this project."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 6,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 648
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "gBF1K2JN4RFJ",
|
|||
|
"outputId": "966a5049-6036-4a25-bc16-7ed1d61e845f"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAJ3CAYAAABx8gsIAACAAElEQVR42uydCXBd5ZmmVZVUD5VOplMTppPpdqZdTYqk6AqVyaQzdCrpIc2k6UkmDY0JYYB03GOMaTuEEMLS0KwOCWGNF1n3LHfVZluWJe/7Iu/yCt4NGHnfZFu2JEuWJfnM/13uMdeKDNY9d/l/3eep+su2WCS/5z33vO9ZvlNSAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxlJWVjY0FAo9YVnWPNt2DuZtOc5O9T0dtb49GHR0HOcm+fvI3yufOqrvuUW2XzQavQYv4sXLNHTQEAAAACBn2LZ9q+OGW+rmLd+7evvB1o3vt3hbDrTlfG18/7S3bNMeb/aSVSfccORUyLaXqDIyxEQNS0tLP+044enhaKx17vLG5tU7Dnr51HHJ+p2dVdPqDiodd5iqYboXZyxYvl958Vy+vThz8apj4kVVBhabqmNSQ8c9Xaj9edbi1SfdSPS0yfuzT2XN9Hura2esT1RWn44lKrrzsZT/e5X/vHAk2uGGw+8PlpMkAAAAg5JIJPJTddA+t2rrvrwErisHsRZv+tzFRy3bPmJaAJMipTR8p3bOos7N+84UVMe5DRt6VRg7ZWKITXoxGuvQxItHVCk5bJqOjhO5T3mxXQcN6+YuaTZxfxZUmbk2UTVlZbyiqmfR2re9dbuP5u3kiL/W7Tnmrdq2z5tcO+M95cX9phdTAACAQYcEBhW8LxQ6eKWvmYtW7lA/1yKjSkA0vrp29sKLumgohSociawzz4tut05enLFoxdsmeTGlYZdOGs5avOo90/bn559//pOx8sq9qlB7hT45csmL85evN01HAACAQU9VTX28ZsY8bYKXrM37znquGz5myjMXcktVNF7eJbc46aRhNFHR5UQSf2eKF6unzSjX0ovh8FFTvFg5eZqlp4aREyY9Q5Woqnm8vGrKRfnZddJRFeUjPIsGAACgU2iorD69fPM7WoUvWbOXrN4jD7GboGEkllixYPUW7TScv3KjF09UzjLHi5PP6OjFWUtWbzfFi/GKqmYdNZyzdO0hUzRMfS4eXLphl4afi2v2mqQjAADAoMd2HG/9uye0Cw3y0LwKDduM0NB2OlZvP6CfhjsOeuFY/AheDLZWbT9w2hgvOs5FLffnHQd7bNvebpAXL8rzShp+Lp4zxYsAAABFgRuOaBcY/KlgMs7ZjODlduqqoUwWxIvBdbQc54AhGl7Udn+2zdif0REAAACumliiQssAK8uU0BCORFt01TAci7fhxeLxIhqiIwAAABAaKFOUKbyIhuhImQIAACA0UKYoU3gRDSlTlCkAAADKFKGBMoUX0ZAyhY4AAABAaKBM4UXKFBqiIwAAABAaKFOUKcoUGqIjAAAAEBooU5Spga9I7ULv8//lzz31v/uDNWfNDsoU+zM6AgAAAKGBMkWZ6m/dcOPXk8Xpz4b8V+8bf/Ody9biTe9Rptif0REAAAAIDZQpylR/S0rUnfeN4DY/9md0BAAAAEIDZYoyNZD1gzvu9v7p//6UMsX+jI4AAABAaKBMUaYGsl4LVXif+uM/9v72ln/w7h4+ynvwkacurRXbD1Gm2J/REQAAAAgNlCnKVH9Lno0q6Wf4RAkDKNif0REAAAAIDZQpytSV1+R5qz1nytx+V+O7zZQp9md0BAAAAEIDZYoyhRfREB0BAACA0ECZokwF8KI8JyVT/BL1S71b//HO5O/7W/Mbd1Om2J/REQAAAAgNlCnKlL9efCOUfCZKbuXjmSn2Z510rFu2KenPIEWeMgUAAED4okxRpvAiGhZdmfrWzd9LFvlsjuunTAEAABC+KFOUqZx48d4RY7yf/9uLl31Nrlh9/r/8efIqAWWK/TlfOorfpEh99j99zvuj/3CNt+ytfZQpAAAAyhThizKllxdlSp//Lil5NurLf3XjZe+X+u6t/+fSbYCUKfbnfOl4530jvE988pPe+Ni0pP/GPPYsZQoAAIAyRfiiTOnnRbmNquQKz0rJkhf5Lt70HmWK/TkvOsoLouVqlLw8Wv58w41f9z73nz/vbXy/hTIFAABAmSJ8Uab08qKEV7nyJFel5DmVvu+YCnqLFWWKMjWQ9ct/fylZ4uWqlPz5ybGvJ//80jiXMgUAAECZInxRpvT0olx9ytazKZQpylQmS64+ye2m8pyefyXKv1IlV6goUwAAAJQpwhdlStsy9YM77k6OSO+7uM2P/TlfZUrG8Pf1m/w5yHh+yhQAAADhizJFmcqpF/1R1CW8Z4r9uQA6zlzxdvK9Uh+3Vu86RpkCAACgTBG+KFN6eVFur5JClc2XpFKmKFMDfYH0x61iKPYAAACUqQHc1iIPWP/jj+79gxWpXUiZusr12PO/S06d6xu8pCBQpq5uye18/zL6lzwzRZkqiI7pV6ZG/vzx5P4rn4Py7jPxpbxzSv4s4/wpUwAAAJSpyyZX9bckVFCmPn7J0AR5J40smUiX/qzPrf94J2XqKtfLpTHvM//xT5KeLMZbqyhT+ugoV0hlZH/61+TkkuzjQa6cUqYAAAAGWWj4H9/+bnJylYyglttX0lcxBNhslKnJ81Yny6eUAW7zC3ZlqoRnpihTGugoV5RlGEr616zqWUXzAmkAAADK1FWuu4eP8v7X92/nmamAt0pKIc3Ge2iKuUzJFagHH3mq3yXjqSlTlKl86SifiVKc5AqV+E+uUslVUxmRzpUpAACAIi9T/ktSZcnVFAkI8txU35elFsM46mw9M3XviDHJZ6bktr5/HvXwpRIgz1JRpigCaGiWjnIl9EtfvuGyq6Oyf78WqigaHQEAAChTV1hSlEquYmoVz0xd/bqShgygGPggjy8O/ctLt1PJrVaVsxsoU5SpvOsoV5wT9UuTn4PjY9MC3fZMmQIAABhEoaFu2aZ+p/cxzS/z1feqnr8kjFGmrm7J1DS/gMrVUnlGRR74l1soi2GCGmVKLx3lCr58Bvbdp5nmBwAAUORl6mrOyPLMFO+ZyrcXh153/aXn96RQSXAtLa9LFqwgpZQyRZka6JLnH6XIl/CeKQAAAMrUxxUnGUIh71XxnxWQ96k890opZepjljwb5d/GJ7/2t/7bX/8NZWoAE9Tk2bP0MuVPSiyGCWpBNZSryUH3W8rUB0uel5IyJeW+7xV7eRUCZQoAAIAylVxP/3ZcMqz670OS51NkapUEiZpFjRn/f++4Y1iL+v82pa1haT/6qxn+s9/qVKYkWIl2uXpm6q677z5vgobZ8qIEV/GdlHvxoDwvJc9PyS1/Qab5meLFoBqWpF4ym4sy9d3v/l1rMXlRfCcnS4q5lAIAAFCmrmL97S3/kLy9Kv3WPrk6JcFMXp6qWWho0qlMGXqbX5OuXpTpkX0nqEmRCjIIxSQvBtVQrt7J85AGXZnS1ov/MvqXybHo2bjlmTIFAAAwyMvUl//qxsu+Ju9RkSArAwEoU1e/5GF1CWFydUC0m7nibcpUBredynNSUqBkbH+Q8fzFVqYMfGZKWy+OeezZS8NP5GXS6asYXhkBAABAmRrgBDX/5ZRSBvzR1Bo+9K9tmRLdSvrc4idh7E13MmXqI5YUTilOH7eCjKWmTFGmBrqkNJVc4dZdBlAAAABQpi4tGfP7P7793T8IDP5ACs1Cw8M6lil5IF2Kk5RQGQAgt1vJLZLykk85s61ZmXpYJy9KUSq5ineeaRhgH9ZxfzasTD2s6+eiXH0Sz/W3gtz6R5kCAAAYZGXKX/7LKWUkcNDb04ptNLo/cU5uT0v/uhQqKVlM8/to7eSKqKw77xuR1FFuPfX/LIVUBlNoeGVK6/2ZaX7Zu+VUXiQtJaqYPhcBAAAoUx9zNUrCgUxIk6sqVzoDWwwBNhtlSkKXTO17cuzrl31NSoD/3iTK1McvudX0n/7vTy/72vjYtGShKoZx1JQpfXSU50ZlME9J6sqoXG2WfTzohD/KFAAAwCAIDRIMJCDI2X9/vHd/K8gUtWK4zU9u6fPfPSPvkxLN5FkLGTMvt/zJVSl5kJ3b/K7+PVMyFj39a1b1LF3fM8VtfoPYi7I
|
|||
|
"text/plain": [
|
|||
|
"<IPython.core.display.Image object>"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 6,
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# Run this cell to download and view a schematic diagram for the neural translation model\n",
|
|||
|
"\n",
|
|||
|
"!wget -q -O neural_translation_model.png --no-check-certificate \"https://docs.google.com/uc?export=download&id=1XsS1VlXoaEo-RbYNilJ9jcscNZvsSPmd\"\n",
|
|||
|
"Image(\"neural_translation_model.png\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "0fP7P-yK4RS7"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"The custom model consists of an encoder RNN and a decoder RNN. The encoder takes words of an English sentence as input, and uses a pre-trained word embedding to embed the words into a 128-dimensional space. To indicate the end of the input sentence, a special end token (in the same 128-dimensional space) is passed in as an input. This token is a TensorFlow Variable that is learned in the training phase (unlike the pre-trained word embedding, which is frozen).\n",
|
|||
|
"\n",
|
|||
|
"The decoder RNN takes the internal state of the encoder network as its initial state. A start token is passed in as the first input, which is embedded using a learned German word embedding. The decoder RNN then makes a prediction for the next German word, which during inference is then passed in as the following input, and this process is repeated until the special `<end>` token is emitted from the decoder."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "z70nu6_01iZ3"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## 1. Text preprocessing\n",
|
|||
|
"* Create separate lists of English and German sentences, and preprocess them using the `preprocess_sentence` function provided for you above.\n",
|
|||
|
"* Add a special `\"<start>\"` and `\"<end>\"` token to the beginning and end of every German sentence.\n",
|
|||
|
"* Use the Tokenizer class from the `tf.keras.preprocessing.text` module to tokenize the German sentences, ensuring that no character filters are applied. _Hint: use the Tokenizer's \"filter\" keyword argument._\n",
|
|||
|
"* Print out at least 5 randomly chosen examples of (preprocessed) English and German sentence pairs. For the German sentence, print out the text (with start and end tokens) as well as the tokenized sequence.\n",
|
|||
|
"* Pad the end of the tokenized German sequences with zeros, and batch the complete set of sequences into one numpy array."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 7,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "9G20C4bk1iZ4",
|
|||
|
"scrolled": true
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"english_sent = [sentence.split('\\t')[0] for sentence in data_examples]\n",
|
|||
|
"german_sent = [sentence.split('\\t')[1] for sentence in data_examples]\n",
|
|||
|
"processed_english = []\n",
|
|||
|
"processed_german = []\n",
|
|||
|
"for sentence in english_sent:\n",
|
|||
|
" processed_english.append(preprocess_sentence(sentence))\n",
|
|||
|
"for sentence in german_sent:\n",
|
|||
|
" processed_german.append(preprocess_sentence(sentence))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 8,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "Sxwl-1rB1iZ8"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"p_german_1 = [\"<start> \"+ sentence + \" <end>\" for sentence in processed_german]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 9,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "WnIdqZFk1iaA"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"tokenizer = Tokenizer(num_words=None,filters = '',lower=False,char_level=False)\n",
|
|||
|
"\n",
|
|||
|
"tokenizer.fit_on_texts(p_german_1)\n",
|
|||
|
"tokenizer_seq = tokenizer.texts_to_sequences(p_german_1)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 10,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 381
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "5UlnBdIK1iaE",
|
|||
|
"outputId": "3668d45e-80d9-449f-f3e9-6f56d4cfdc85"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"German Sentences :\n",
|
|||
|
"<start> er ist noch in den anfangssemestern . <end>\n",
|
|||
|
"<start> du fehlst mir auch . <end>\n",
|
|||
|
"<start> halte mich auf dem laufenden . <end>\n",
|
|||
|
"<start> ist sie verheiratet ? <end>\n",
|
|||
|
"<start> tom ist betruegerisch . <end>\n",
|
|||
|
"\n",
|
|||
|
"Token sequences :\n",
|
|||
|
"[1, 14, 6, 72, 46, 53, 5563, 3, 2]\n",
|
|||
|
"[1, 13, 1104, 21, 112, 3, 2]\n",
|
|||
|
"[1, 288, 22, 29, 118, 1408, 3, 2]\n",
|
|||
|
"[1, 6, 8, 703, 7, 2]\n",
|
|||
|
"[1, 5, 6, 5206, 3, 2]\n",
|
|||
|
"\n",
|
|||
|
"English Sentences :\n",
|
|||
|
"he's an undergrad .\n",
|
|||
|
"i miss you , too .\n",
|
|||
|
"keep me posted .\n",
|
|||
|
"is she married ?\n",
|
|||
|
"tom is deceitful .\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"num_of_sentences = len(p_german_1)\n",
|
|||
|
"\n",
|
|||
|
"random_ind = np.random.choice(num_of_sentences,5)\n",
|
|||
|
"print('German Sentences :')\n",
|
|||
|
"for ind in random_ind:\n",
|
|||
|
" print(p_german_1[ind])\n",
|
|||
|
"print()\n",
|
|||
|
"print('Token sequences :')\n",
|
|||
|
"for ind in random_ind:\n",
|
|||
|
" print(tokenizer_seq[ind])\n",
|
|||
|
"print()\n",
|
|||
|
"print('English Sentences :')\n",
|
|||
|
"for ind in random_ind:\n",
|
|||
|
" print(processed_english[ind])"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 11,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "ZGTaqt1t1iaI"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"padded_seq = pad_sequences(tokenizer_seq,maxlen = None,padding = \"post\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "foL7Ihs21iaP"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## 2. Prepare the data"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "-9rCEE4z1iaQ"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"#### Load the embedding layer\n",
|
|||
|
"As part of the dataset preproceessing for this project, you will use a pre-trained English word embedding module from TensorFlow Hub. The URL for the module is https://tfhub.dev/google/tf2-preview/nnlm-en-dim128-with-normalization/1.\n",
|
|||
|
"\n",
|
|||
|
"This embedding takes a batch of text tokens in a 1-D tensor of strings as input. It then embeds the separate tokens into a 128-dimensional space. \n",
|
|||
|
"\n",
|
|||
|
"The code to load and test the embedding layer is provided for you below.\n",
|
|||
|
"\n",
|
|||
|
"**NB:** this model can also be used as a sentence embedding module. The module will process each token by removing punctuation and splitting on spaces. It then averages the word embeddings over a sentence to give a single embedding vector. However, we will use it only as a word embedding module, and will pass each word in the input sentence as a separate token."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 12,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "ywZgobCh1iaR"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# Load embedding module from Tensorflow Hub\n",
|
|||
|
"\n",
|
|||
|
"embedding_layer = hub.KerasLayer(\"https://tfhub.dev/google/tf2-preview/nnlm-en-dim128/1\", \n",
|
|||
|
" output_shape=[128], input_shape=[], dtype=tf.string)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 13,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 35
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "TiY8QEDp1iaV",
|
|||
|
"outputId": "ec5b02c9-833b-494d-c6d4-852456d40c24"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"TensorShape([7, 128])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 13,
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# Test the layer\n",
|
|||
|
"\n",
|
|||
|
"embedding_layer(tf.constant([\"these\", \"aren't\", \"the\", \"droids\", \"you're\", \"looking\", \"for\"])).shape"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "KjuzXc-z1iaY"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"You should now prepare the training and validation Datasets.\n",
|
|||
|
"\n",
|
|||
|
"* Create a random training and validation set split of the data, reserving e.g. 20% of the data for validation (NB: each English dataset example is a single sentence string, and each German dataset example is a sequence of padded integer tokens).\n",
|
|||
|
"* Load the training and validation sets into a tf.data.Dataset object, passing in a tuple of English and German data for both training and validation sets.\n",
|
|||
|
"* Create a function to map over the datasets that splits each English sentence at spaces. Apply this function to both Dataset objects using the map method. _Hint: look at the tf.strings.split function._\n",
|
|||
|
"* Create a function to map over the datasets that embeds each sequence of English words using the loaded embedding layer/model. Apply this function to both Dataset objects using the map method.\n",
|
|||
|
"* Create a function to filter out dataset examples where the English sentence is greater than or equal to than 13 (embedded) tokens in length. Apply this function to both Dataset objects using the filter method.\n",
|
|||
|
"* Create a function to map over the datasets that pads each English sequence of embeddings with some distinct padding value before the sequence, so that each sequence is length 13. Apply this function to both Dataset objects using the map method. _Hint: look at the tf.pad function. You can extract a Tensor shape using tf.shape; you might also find the tf.math.maximum function useful._\n",
|
|||
|
"* Batch both training and validation Datasets with a batch size of 16.\n",
|
|||
|
"* Print the `element_spec` property for the training and validation Datasets. \n",
|
|||
|
"* Using the Dataset `.take(1)` method, print the shape of the English data example from the training Dataset.\n",
|
|||
|
"* Using the Dataset `.take(1)` method, print the German data example Tensor from the validation Dataset."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 14,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "Q-BUJOl_1iaZ"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"x_train,x_valid,y_train,y_valid = train_test_split(processed_english,padded_seq,test_size = 0.20)\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 15,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "4w6rM8Bl1iad"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"train_dataset = tf.data.Dataset.from_tensor_slices((x_train,y_train))\n",
|
|||
|
"valid_dataset = tf.data.Dataset.from_tensor_slices((x_valid,y_valid))\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 16,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "D7bn3mRs1iaj"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def spliter(english,german):\n",
|
|||
|
" \n",
|
|||
|
" english = tf.strings.split(english,sep = \" \")\n",
|
|||
|
"\n",
|
|||
|
" return english,german\n",
|
|||
|
"\n",
|
|||
|
"train_dataset = train_dataset.map(spliter)\n",
|
|||
|
"valid_dataset = valid_dataset.map(spliter)\n",
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 17,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "q0Fdso381ian"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"\n",
|
|||
|
"def embedder(english,german):\n",
|
|||
|
"\n",
|
|||
|
" english = embedding_layer(english)\n",
|
|||
|
" return english,german\n",
|
|||
|
"\n",
|
|||
|
"train_dataset = train_dataset.map(embedder)\n",
|
|||
|
"valid_dataset = valid_dataset.map(embedder)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 18,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "oWS26VBJ-SCZ"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def lengther(english,german):\n",
|
|||
|
" length = tf.constant(13,dtype = tf.int32)\n",
|
|||
|
"\n",
|
|||
|
" return tf.math.greater_equal(length,tf.cast(len(english),tf.int32))\n",
|
|||
|
"\n",
|
|||
|
"train_dataset = train_dataset.filter(lengther)\n",
|
|||
|
"valid_dataset = valid_dataset.filter(lengther)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 19,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "MdqSXEoX1iav"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def padder(english,german):\n",
|
|||
|
"\n",
|
|||
|
" paddings = [[13-len(english),0],[0,0]]\n",
|
|||
|
" english = tf.pad(english, paddings = paddings)\n",
|
|||
|
"\n",
|
|||
|
" return english,german\n",
|
|||
|
"\n",
|
|||
|
"train_dataset = train_dataset.map(padder)\n",
|
|||
|
"valid_dataset = valid_dataset.map(padder) "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 20,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "QZCCfB8fWaLF"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"train_dataset = train_dataset.batch(16,drop_remainder= True)\n",
|
|||
|
"valid_dataset = valid_dataset.batch(16,drop_remainder= True)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 21,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 90
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "ackk7HptX8cX",
|
|||
|
"outputId": "456094d4-0398-480d-8813-b0ec2da388ff"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Training Dataset: \n",
|
|||
|
"(TensorSpec(shape=(16, None, 128), dtype=tf.float32, name=None), TensorSpec(shape=(16, 14), dtype=tf.int32, name=None))\n",
|
|||
|
"Validation Dataset: \n",
|
|||
|
"(TensorSpec(shape=(16, None, 128), dtype=tf.float32, name=None), TensorSpec(shape=(16, 14), dtype=tf.int32, name=None))\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print(\"Training Dataset: \")\n",
|
|||
|
"print(train_dataset.element_spec)\n",
|
|||
|
"print(\"Validation Dataset: \")\n",
|
|||
|
"print(valid_dataset.element_spec)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 22,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 1890
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "jtozc65MECNw",
|
|||
|
"outputId": "07102487-1efe-43d7-d7fe-333b3ca5849c"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"tf.Tensor(\n",
|
|||
|
"[[[ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" ...\n",
|
|||
|
" [-0.03925273 0.02352522 0.02837687 ... -0.09089245 -0.02715905\n",
|
|||
|
" 0.05939376]\n",
|
|||
|
" [-0.02130977 -0.07366709 0.10384148 ... -0.22099297 0.07892267\n",
|
|||
|
" -0.01285619]\n",
|
|||
|
" [ 0.012986 0.08981702 0.16017003 ... 0.06796802 0.13528903\n",
|
|||
|
" -0.022035 ]]\n",
|
|||
|
"\n",
|
|||
|
" [[ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" ...\n",
|
|||
|
" [ 0.12846488 0.07159402 0.09918732 ... -0.07272145 0.03883429\n",
|
|||
|
" 0.04847484]\n",
|
|||
|
" [-0.03209486 -0.04160203 -0.12152159 ... -0.12753211 -0.02127644\n",
|
|||
|
" -0.17632811]\n",
|
|||
|
" [ 0.012986 0.08981702 0.16017003 ... 0.06796802 0.13528903\n",
|
|||
|
" -0.022035 ]]\n",
|
|||
|
"\n",
|
|||
|
" [[ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" ...\n",
|
|||
|
" [ 0.09539654 0.04058193 0.04366608 ... -0.03468065 0.05563864\n",
|
|||
|
" 0.00659631]\n",
|
|||
|
" [ 0.02027391 0.04513401 -0.15236828 ... -0.10530912 0.10933939\n",
|
|||
|
" -0.0068233 ]\n",
|
|||
|
" [ 0.012986 0.08981702 0.16017003 ... 0.06796802 0.13528903\n",
|
|||
|
" -0.022035 ]]\n",
|
|||
|
"\n",
|
|||
|
" ...\n",
|
|||
|
"\n",
|
|||
|
" [[ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" ...\n",
|
|||
|
" [ 0.1278139 -0.03678622 0.06628644 ... -0.03481541 -0.00253005\n",
|
|||
|
" -0.06914762]\n",
|
|||
|
" [-0.02380057 0.12938826 -0.12002522 ... -0.0778875 0.01935136\n",
|
|||
|
" -0.01938629]\n",
|
|||
|
" [ 0.012986 0.08981702 0.16017003 ... 0.06796802 0.13528903\n",
|
|||
|
" -0.022035 ]]\n",
|
|||
|
"\n",
|
|||
|
" [[ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" ...\n",
|
|||
|
" [ 0.2000517 0.0272701 -0.03822284 ... 0.1073221 -0.01488957\n",
|
|||
|
" -0.01846376]\n",
|
|||
|
" [ 0.03175933 0.06343 0.05124436 ... -0.16108854 0.23792052\n",
|
|||
|
" 0.04684178]\n",
|
|||
|
" [ 0.012986 0.08981702 0.16017003 ... 0.06796802 0.13528903\n",
|
|||
|
" -0.022035 ]]\n",
|
|||
|
"\n",
|
|||
|
" [[ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" ...\n",
|
|||
|
" [ 0.02199916 0.08012285 -0.10019045 ... -0.12652187 -0.05457912\n",
|
|||
|
" 0.14176568]\n",
|
|||
|
" [ 0.14766233 -0.06297084 0.07939632 ... -0.02586731 0.17180535\n",
|
|||
|
" -0.03599825]\n",
|
|||
|
" [ 0.012986 0.08981702 0.16017003 ... 0.06796802 0.13528903\n",
|
|||
|
" -0.022035 ]]], shape=(16, 13, 128), dtype=float32)\n",
|
|||
|
"tf.Tensor(\n",
|
|||
|
"[[ 1 5 6 447 3 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 4 456 176 254 125 3 2 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 3458 126 3 2 0 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 4 18 318 2558 3 2 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 5 686 34 205 3 2 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 17 522 71 330 3 2 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 2190 8 22 12 3 2 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 5 6 50 781 3 2 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 6 33 366 7 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 4 24 49 3 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 4 110 19 1596 3 2 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 14 998 21 20 3 2 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 26 851 23 1269 3 2 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 17 381 80 3 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 4 940 115 3 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 11 97 249 41 3 2 0 0 0 0 0 0 0]], shape=(16, 14), dtype=int32)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"for english,german in train_dataset.take(1):\n",
|
|||
|
" print(english)\n",
|
|||
|
" print(german)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 23,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 1890
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "mYhlOwDTEWj5",
|
|||
|
"outputId": "9634d9a1-79d2-4210-af1d-6d12d14523f0"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"tf.Tensor(\n",
|
|||
|
"[[[ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" ...\n",
|
|||
|
" [ 0.03970453 -0.04158472 0.10027828 ... -0.0063081 -0.0119952\n",
|
|||
|
" -0.04243935]\n",
|
|||
|
" [ 0.03519357 0.01258469 -0.04993629 ... -0.08874417 0.1515415\n",
|
|||
|
" -0.00328062]\n",
|
|||
|
" [ 0.012986 0.08981702 0.16017003 ... 0.06796802 0.13528903\n",
|
|||
|
" -0.022035 ]]\n",
|
|||
|
"\n",
|
|||
|
" [[ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" ...\n",
|
|||
|
" [ 0.04712053 0.00124522 0.03287347 ... -0.07834134 0.06874365\n",
|
|||
|
" -0.08857308]\n",
|
|||
|
" [ 0.09144389 -0.10057256 -0.07086372 ... -0.09084993 0.01224649\n",
|
|||
|
" -0.03558629]\n",
|
|||
|
" [ 0.012986 0.08981702 0.16017003 ... 0.06796802 0.13528903\n",
|
|||
|
" -0.022035 ]]\n",
|
|||
|
"\n",
|
|||
|
" [[ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" ...\n",
|
|||
|
" [-0.17962365 0.04181888 -0.00170533 ... 0.18615879 0.06329069\n",
|
|||
|
" 0.06792238]\n",
|
|||
|
" [-0.02130977 -0.07366709 0.10384148 ... -0.22099297 0.07892267\n",
|
|||
|
" -0.01285619]\n",
|
|||
|
" [ 0.012986 0.08981702 0.16017003 ... 0.06796802 0.13528903\n",
|
|||
|
" -0.022035 ]]\n",
|
|||
|
"\n",
|
|||
|
" ...\n",
|
|||
|
"\n",
|
|||
|
" [[ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" ...\n",
|
|||
|
" [ 0.22104432 -0.01606884 0.00432623 ... 0.13655335 0.01242723\n",
|
|||
|
" 0.00964247]\n",
|
|||
|
" [ 0.10299458 0.16180418 -0.08432977 ... 0.04323117 0.08910137\n",
|
|||
|
" -0.00400291]\n",
|
|||
|
" [ 0.012986 0.08981702 0.16017003 ... 0.06796802 0.13528903\n",
|
|||
|
" -0.022035 ]]\n",
|
|||
|
"\n",
|
|||
|
" [[ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" ...\n",
|
|||
|
" [ 0.16666627 0.01299293 0.04397342 ... 0.10751364 -0.00171146\n",
|
|||
|
" -0.0662554 ]\n",
|
|||
|
" [ 0.09130137 -0.02096943 -0.02457789 ... -0.12161301 0.150714\n",
|
|||
|
" -0.07756138]\n",
|
|||
|
" [ 0.012986 0.08981702 0.16017003 ... 0.06796802 0.13528903\n",
|
|||
|
" -0.022035 ]]\n",
|
|||
|
"\n",
|
|||
|
" [[ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" [ 0. 0. 0. ... 0. 0.\n",
|
|||
|
" 0. ]\n",
|
|||
|
" ...\n",
|
|||
|
" [ 0.03970453 -0.04158472 0.10027828 ... -0.0063081 -0.0119952\n",
|
|||
|
" -0.04243935]\n",
|
|||
|
" [ 0.04465724 0.07450107 -0.04335912 ... -0.1517998 0.18933882\n",
|
|||
|
" -0.08688068]\n",
|
|||
|
" [ 0.012986 0.08981702 0.16017003 ... 0.06796802 0.13528903\n",
|
|||
|
" -0.022035 ]]], shape=(16, 13, 128), dtype=float32)\n",
|
|||
|
"tf.Tensor(\n",
|
|||
|
"[[ 1 5 24 12 741 3 2 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 4 180 147 3 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 4 15 447 3 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 4 15 854 3 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 33 23 25 3 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 10 16 223 967 3 2 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 10 6 189 3 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 236 13 22 7 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 4 18 40 107 88 3 2 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 288 53 780 9 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 83 6 5 205 7 2 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 4 15 1484 3 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 43 6 106 208 7 2 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 5 6 128 3 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 73 12 245 3 2 0 0 0 0 0 0 0 0]\n",
|
|||
|
" [ 1 5 24 12 429 3 2 0 0 0 0 0 0 0]], shape=(16, 14), dtype=int32)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"for english,german in valid_dataset.take(1):\n",
|
|||
|
" print(english)\n",
|
|||
|
" print(german)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "isIYhjq01iay"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## 3. Create the custom layer\n",
|
|||
|
"You will now create a custom layer to add the learned end token embedding to the encoder model:"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 24,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 423
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "e22f1Xyh6xvE",
|
|||
|
"outputId": "794ca554-5c3c-42e8-f56b-3e9d7928b66b"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAGWCAYAAAD45r6hAABE3ElEQVR42u2dDWxV552njzSosmYZLdKgWTRDNWiKuqjKVmiaqZiKSp5BUzRFHbpipoyaqWDHJRDYLLNlpmia7ZCW7mSnTJt2WYrvOefec+3rb5tPGwyY4BiHGGIShxAwCU1JQoJDDPgbA7Y5+/7t94bjy7WDr439HvM80l+277kfx7/znvc89z1flgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwOs8+++wMUgDaITkCGcLE4XleVtS21+XHYsdjrns9Ho125kWjXQ+7Bj8nFvuwND//lzIPLIlpzJNPPrmWFMbHunXrskmBdkiOZAgg2La9wnWc65UlJT3njhzxPzpxwm8/dcrvPn36oVeb+pzmo0f96rIyvyQvr/PkwYOLWCLTkKeffvpzqrNqJYnMWb9+/RyV4dXVq1fzTSdDVHazVIbXyHBC2uI1kqAtwtQRiUQ2xFy38926ukkRttGq8cABPz8W6z+xf/+fsGSm3zfNElV+Tk7OfNLIjHXr1j2jMhxYu3btStLIDJXdEmmHqp4ijXGtzz9lfZ6YtvjUU099mzRgrNi2vdCORLreM0DeghJXnJ/fzu7U6dfh31TVuWbNmhWkkXGGV0XgVIYvkUbGGf6Tqn5VvyaNzFFtsE1leIf1eVxt8ceq7qo6SxowViKRSPHxvXt/bYq8JetQWZlfVVISYQlNn87+CVXSUfWpb52/IJGMMlyqN5oyetShagGpZJTjcZ3hHTLMvC2q7G5Jjmp9LiKRjHM8Ixmqn720RchA4NovHz/eb5rAye7cikSCL8jTraPS9SaJZPRtfb+WDsnwQ7Xh3EYqGeXYmWyLKsM8Eslofa4NrM+XSSQzVPu7pTOUL7b/l0RgLNiRSKdp8pY8sSE/FuthCU0D9MHO0kG1qJ8ygtROKuPK8JragH4sJ4Rw8HNGAucHMuQA8nGuz+pnB6nQFmHyiTpOi4kCJ1UQi/WxhKZfh3WJFMiQDMkRyBAQOKCzIkMgQ3IkQ0DgEDigsyJDMgRyJENA4BA4oLMiQzIkRyBDQOCAzooMgQzJkQwBgUPggM6KDMkQyJEMAYFD4IDOigzJkByBDAGBAzorMiRDMiRHMgQEDoEDOisyJEMgRzIEBA6BAzorMiRDcgQyBAQO6KyADMmQHMkQAIEDOisyJEMgRzIEBA6BAzorMiRDcgQyBASOJURnBWRIhuRIhgAIHNBZkSEZkiE5kiEgcAgc0FmRIRmSI5AhIHAIHJ0VkCEZkiMZAiBwQGdFhkCG5EiGgMAhcEBnRYZkSI5AhoDAIXB0VkCGZEiOZAiAwAGdFRkCGZIjGQICh8ABnRUZkiGQIxkCAjc1AjdD1ZIJeJ9ZqhbRkuisyJAMyRHIEBC4hy9wq1TVTsD7eKq20JLorMiQDMkRyBAQuIcrcDJq9pyqJlXZgcdnq1qharmqmfqxGfo5cwPPk98Xq5qnqlpL3EJaE50VGZIhOQIZAgL38AROZKtZVZt1bxRuqf67XFWlqsuqFuhpO7XszdBid9EaGnWTUbwWVbL+PU9rorMiQzIkRyBDQOAmbxdqlhaxVYHpmwPTk9L2jCpHPz5DT2MXKp0VGZIhOQIZAgI3BQInJyH4qnL046u0lPla7oTHVfWqarWG705F4OisyJAMyRHIEBC4KRC4bFV9WsRSa5Z+zlwtb5cCjyFwdFZkSIbkCGQICNwUCdx8a2i0LTiyJo9tCPwtJyvIsXByfFwCgaOzIkMyJEdyJENA4CZf4FZaQyNqy/XfImb11tAJDlINqor1NBE5OalhlpY8OdlhhZ62U4sg14KjsyJDMiRHIENA4B6ywM3Sglarf5cTFbapOqtrm35Mpsno29IU+dtjDR0ft9C6dykRoLMiQzIkRyBDQOBYQnRWQIZkSI5kCDB9BE5Gzvw0xUgYnRUZAhmSIxkCAmeowM2xhu6EkFqzWap0VmQIZEiOZAgIHAIHdFZkSIZAjmQICBy7UOmsgAzJkBzJkAzh0RM4oLMiQyBDciRDQOAeMYHbputh8wStjM6KDMmQHIEMAYGbGJZb9y7i+7DItoZ26wKdFRmSITkCGQICNwEs0JX8XU6KkNtnyS22FgeeJxfyXaR/ygV85YK+MwLTk9OSzLOGLu4rF/ndqAUuW/8NdFZkSIbkCGQICNw48Kx7JzzIT7mbQrM1dHeGLuve7lWRL7l11kVV262hW2zJLbdm6umX9HOSyH1Ra7UQNmmBS/4dbmzbXhpNOLvduPO+69k9ruf0jrV+8q9b72TyOjfPbvUKnZ2e54XahGX+3YT9jyrHM27M6ZzMDKN5bodX5B53Ys6fh70tOo7z9WiBW+XmOVeinn1z0jLMd7riJe5rib3x/xb2DKUtqnXq2VjCPav+t+7JbYvOtXipmygrK5sZ+hwT7jfVenVE9VFXnMlsi3lOZ7wk2hgvjv4VKoPAPeIC1xQYWVupJS4pcH5A0mbo5276FIELvjbcRCKR2bYbKXZidlf5i/n+/qYiv+rNYv9gc8mk1AH1WbvqE35id8xXG5v2on15XwypAK+wXbsjvyLaV3E8Mak5DmZ4osAvOZznR+NOv5LH15QEzQ1jW1TtUH2JsHsnuy0OyzDPuRsrcN9XEjQvjG3Rde2/daJOd/6u2N0paYt6ffYKnJvltV52WPtF9WW2WrXFO1PdFtWXs7fDuD4DAjdBAhc8oSEoXvJ7S8prt6qqfCQE7tlnn51hO/aJgr1e94FzJZMmbSNVaU2erzbgd8K24VSd/QYnavfsfaVwyjOUjUxhlTeglusVleOsMLVFJ+acVm3xzlS3Rcmw6IDnq2XaHbYNZ25u7tNK4G+b0BZlfXY9e6Ck2vuTsPWLUc8+V7DP801pi+rLYTsSh8A9ogK3ZRSBSz1E4ZmApMm0JdNW4JR4rIrmO+0HzhdPeWcf7PSjcefDsOxOtW17oW1Huk3YYAarcL933bZzt4WlLaoc/z6acG6Z1hbdmP12qNqiE+k1qS0Ors8Jpz1Mh0fE8p3/EStwBsxqi/l9jhs5G/bDTACBm2CBk92pwXXCsYaOh0sK3KrAtG3TSuCcqHNKdneYJB5Sid2xu3bU/l5IJLhYfUN+17QMZZePWr7XwtIW3bhz3sS2mF8euyEjrCFpiyUlh+I9Bq7PfrzU/XloNpwJ910T22K8NPp+WNoiIHCTJHDJOzzI2aprtdA9pqeXW0MnNciZp3LNt7aAwD2uX5tj3TvpIWQjcHZkQDb0pnVUMoLges7xkGw02/adLjQuw8ozRbI7+iZtcfxt0bbtypC0xS4T26JkGCtw3gjNaLBj3zWxLe45WXhVLeM9qA0CN80FLkdX8vfgNeEWBOQuW4+yyUkLZ62hs1UXBZ4rZ5cmrKEzWOU1K1Rt1tNm6JG62oDwhUzgnMgt0zqp5EG8dtRuDYvAmZihlO3a/eHZaEb6jG2LTuRySCS4x9QMXS/SEZq26EYGTM1RLePfoDYIHLfSGiZwjyZy5qmp8uFEnbaQCNwlUzN08+zQ3K9OLp1gbFt0Iy2hWJ9du9XYDFVfE5q2qNYbY7+U2fZlCxA4BA6BQ+AQOAQOgUPgEDhA4EIocLKLdAUCh8AhcAgcAofAIXCAwIVH4B5tEDgEDoFD4BA4BA4QOAQOgUPgEDgEDoFD4BA4QOAAgUPgEDgEDoFD4BA4BA6BAwQOgUPgEDgEDoEDBA6BQ+AQOAQOgUPgEDgEDhA4QOAQOAQOgUPgEDgEDoFD4ACBQ+AQOAQOgUPgAIFD4BA4BA6BQ+AQOAQOgQMEDhA4BA6BQ+AQOAQOgUPgEDhA4BA4BA6BQ+AQOEDgEDgEDoFD4BA4BA6BQ+AAgQMEDoFD4BA4BA6BQ+AAgQMEDoFD4BA4BA6BAwQOgUPgEDgEDoFD4BA4BA4QOAQOgUPgEDgEDoFD4BA4QOAAgUPgEDgEDoFD4ACBQ+AQOAQOgUPgEDgEDoEDBA6BQ+AQOAQOgUPgEDgEDkZen2273UR5az91CoFD4BA4BA6BQ+AQOAQO0qGWdbfIkmk
|
|||
|
"text/plain": [
|
|||
|
"<IPython.core.display.Image object>"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 24,
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# Run this cell to download and view a schematic diagram for the encoder model\n",
|
|||
|
"\n",
|
|||
|
"!wget -q -O neural_translation_model.png --no-check-certificate \"https://docs.google.com/uc?export=download&id=1JrtNOzUJDaOWrK4C-xv-4wUuZaI12sQI\"\n",
|
|||
|
"Image(\"neural_translation_model.png\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "M6gLIHG81iaz"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"You should now build the custom layer.\n",
|
|||
|
"* Using layer subclassing, create a custom layer that takes a batch of English data examples from one of the Datasets, and adds a learned embedded ‘end’ token to the end of each sequence. \n",
|
|||
|
"* This layer should create a TensorFlow Variable (that will be learned during training) that is 128-dimensional (the size of the embedding space). _Hint: you may find it helpful in the call method to use the tf.tile function to replicate the end token embedding across every element in the batch._\n",
|
|||
|
"* Using the Dataset `.take(1)` method, extract a batch of English data examples from the training Dataset and print the shape. Test the custom layer by calling the layer on the English data batch Tensor and print the resulting Tensor shape (the layer should increase the sequence length by one)."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 25,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "yg9hjZz11ia0"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"class EndTokenLayer(Layer):\n",
|
|||
|
" \n",
|
|||
|
" def __init__(self, embedding_dim=128, **kwargs):\n",
|
|||
|
" super(EndTokenLayer, self).__init__(**kwargs)\n",
|
|||
|
" self.embedding_dim = embedding_dim\n",
|
|||
|
" def build(self, input_shape):\n",
|
|||
|
" self.end_token_emb = self.add_weight(shape=(input_shape[-1],),\n",
|
|||
|
" initializer='random_uniform',\n",
|
|||
|
" trainable= True)\n",
|
|||
|
" def call(self, inputs):\n",
|
|||
|
" end_token = tf.tile(tf.reshape(self.end_token_emb, shape=(1, 1, self.end_token_emb.shape[0])), [tf.shape(inputs)[0],1,1])\n",
|
|||
|
" return tf.keras.layers.concatenate([inputs, end_token], axis=1)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "vFJUMAbNqDqp"
|
|||
|
},
|
|||
|
"source": []
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 64,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 54
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "4PwI32O11ia3",
|
|||
|
"outputId": "598a9bbb-0ea7-4971-c385-5bcddde14d4a"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"english sentences shape\n",
|
|||
|
"(16, 13, 128)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"endlayer = EndTokenLayer()\n",
|
|||
|
"for english,german in train_dataset.take(1):\n",
|
|||
|
" temp_layer = endlayer(english)\n",
|
|||
|
" print(\"english sentences shape\")\n",
|
|||
|
" print(english.shape) "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 65,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 54
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "XlhLpsO_lIF0",
|
|||
|
"outputId": "36785279-7e7e-4d54-b897-bc6cd7ad5d3d"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"end added shape of english sentences:\n",
|
|||
|
"(16, 14, 128)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print(\"end added shape of english sentences:\")\n",
|
|||
|
"print(temp_layer.shape)\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "OAd3i4_y1ia-"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## 4. Build the encoder network\n",
|
|||
|
"The encoder network follows the schematic diagram above. You should now build the RNN encoder model.\n",
|
|||
|
"* Using the functional API, build the encoder network according to the following spec:\n",
|
|||
|
" * The model will take a batch of sequences of embedded English words as input, as given by the Dataset objects.\n",
|
|||
|
" * The next layer in the encoder will be the custom layer you created previously, to add a learned end token embedding to the end of the English sequence.\n",
|
|||
|
" * This is followed by a Masking layer, with the `mask_value` set to the distinct padding value you used when you padded the English sequences with the Dataset preprocessing above.\n",
|
|||
|
" * The final layer is an LSTM layer with 512 units, which also returns the hidden and cell states.\n",
|
|||
|
" * The encoder is a multi-output model. There should be two output Tensors of this model: the hidden state and cell states of the LSTM layer. The output of the LSTM layer is unused.\n",
|
|||
|
"* Using the Dataset `.take(1)` method, extract a batch of English data examples from the training Dataset and test the encoder model by calling it on the English data Tensor, and print the shape of the resulting Tensor outputs.\n",
|
|||
|
"* Print the model summary for the encoder network."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 28,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "6R2LqbfV1ia_"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def encoder(input_shape):\n",
|
|||
|
" inputs = Input([13,input_shape])\n",
|
|||
|
" h = EndTokenLayer()(inputs)\n",
|
|||
|
" h = Masking([(lambda x: x*0)(x) for x in range(128)])(h)\n",
|
|||
|
" lstm , hidden_state, cell_state = LSTM(512,return_sequences = True,return_state=True)(h)\n",
|
|||
|
" model = Model(inputs=inputs, outputs=[hidden_state, cell_state])\n",
|
|||
|
"\n",
|
|||
|
" return model"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 29,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 308
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "e5XW6NxL1ibC",
|
|||
|
"outputId": "2c9d3ef7-738d-492b-fad6-c206844a1122"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Model: \"model\"\n",
|
|||
|
"_________________________________________________________________\n",
|
|||
|
"Layer (type) Output Shape Param # \n",
|
|||
|
"=================================================================\n",
|
|||
|
"input_1 (InputLayer) [(None, 13, 128)] 0 \n",
|
|||
|
"_________________________________________________________________\n",
|
|||
|
"end_token_layer_1 (EndTokenL (None, 14, 128) 128 \n",
|
|||
|
"_________________________________________________________________\n",
|
|||
|
"masking (Masking) (None, 14, 128) 0 \n",
|
|||
|
"_________________________________________________________________\n",
|
|||
|
"lstm (LSTM) [(None, 14, 512), (None, 1312768 \n",
|
|||
|
"=================================================================\n",
|
|||
|
"Total params: 1,312,896\n",
|
|||
|
"Trainable params: 1,312,896\n",
|
|||
|
"Non-trainable params: 0\n",
|
|||
|
"_________________________________________________________________\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"encoder_model = encoder(128)\n",
|
|||
|
"encoder_model.summary()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 30,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "jEk9ikVh1ibL"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"for english,german in train_dataset.take(1):\n",
|
|||
|
" result_1,result_2 = encoder_model(english)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 31,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 54
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "HsVi4ZNnlGa_",
|
|||
|
"outputId": "80782bcb-b1e4-4ca2-e9eb-e3f48a4ed043"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"tf.Tensor([ 16 512], shape=(2,), dtype=int32)\n",
|
|||
|
"tf.Tensor([ 16 512], shape=(2,), dtype=int32)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print(tf.shape(result_1))\n",
|
|||
|
"print(tf.shape(result_2))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "KvkzpCeZ1ibR"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## 5. Build the decoder network\n",
|
|||
|
"The decoder network follows the schematic diagram below. "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 32,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 501
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "yOjEb7cH7Y4S",
|
|||
|
"outputId": "5b44888c-9039-4cfc-da6e-b4813fd4d782"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnsAAAHkCAYAAABG7OmcAABXHUlEQVR42u29DZRU5Z3nX+eMZ5Yzw+xyVnfjzjA7fSaexONmcpismSE5ZA5ZN8v842Z0JWpGksCuLxgxMgYjRpMAIYkvqAhNU3Xvrbeu7qabN0FeROSleRUQhSAaRFQQRJC3pumGBhq4/+dX3AvXohvpqrpVz637+ZzznH6pru7qb/3qPp967vM8NxIBAAAAAAAAAAAAAAAAAAAAAAAAALhCotFoVSwWG20YxiLDsnabprWnFM2y4u+qv2mpNqAScrQsq7/8P6Zpvl2qDKUZprlFnr9UKtWrkmrRtEqXofpbf6yUWiRDAAD4DKpTuEkdpA+8uHDpljVbd330xoct9ubdbb63Nz48Yje/ud1esOy144lU+pgSv5VKlvoGMcOampreSvDq48nUkYXL13289p09Z0qZ47LXt51pnP3Sp4lk8t2gZujWoqqDw3MWrfhg7dt7jpW6FucvXXsonkgejpnmsqDm6GR4pFwZLli25kDQM3Rpmr3wnqbZ8zZlGpqOpjP1naVoVjxxVsmyHU8kOuLxxI5KeRMHAOXtGO5UB5fDq7fsPFGKDqH7jqLFnrt4xUnVSR0IWgchoqcy3DrrpVcObdp11C5njotWvq46ieSxIHayRjx+l3rsbWve2mWXuxZffHnZp4ZpfhK0HC0r+UN9Mly6L4gZCqkZM66tb5r1em1dw7kl67bY69/dZ5dKmt22fvt+e/VbH51pmPHiZiV/O4MuzgBQrs7VMK4xTau93B2Dt73cvKHdtKwVwepg4wtnzVt0XJcMRfhStfVvB64WrfhJnWpx/tI176vHtSRIGVrx+CmdMpy3ZPU7QcpQGDt27FV105r2Klm1y/3mzW2z5i+eF7QcAUCbzsF6YsbchR26dAzSNu1qtRPpTFtQ5vyYpjkomUq3yiksnTJMZ+rP1s2Y/S9BqcW6xhnVM19aZOtWi/FE8kBQarGhaZahZYbxxP4gzeFrmjv/ybpp07OPXZ8cj3WoN+YfMRcSAHpMIpXevmLTe1p1DtJeWf2GbVmJ2oDI3tzFazad1DHD+qZZa4NSi7V1DZ/qWIsLm9ftlgUHgciwftpBHTNcsOy1D4KSoVDfOOPg8o3btMtx7uIVq4KUIwDoIypnX99xQLuD2tp39tiJZHJnIEZHTfPY2rd3a5lhOlN/JDC1aFnn9KzF3SdlZTUZFpDh23uOK0nZGqBazM6X0y3H1W/tfDtIOQKAJljxxCndDmjuqr54InEwILLXpmuGyXSmI0C1eFbXHGVLETIsMEMrGBkK8UTS1jHHNz88clIWatBzAUCPSKRrtRQVaUGRPdXB7tM1wyDJnmw5oWuOQZE9MixajrauOSJ7AIDsIXvIHrJHhsgeAACyh+whKsgeGSJ7AIDsIXvIHqKC7CF7yB4AIHvIHrKHqJAhsofsAQCyh+whe4gKGSJ7yB4AIHvIHrKXf5u5ZINd9cUv2erXXdKs6S8je8gesgcAyB6yh+wFWVS+Peh/Z8Xu6v/0Bfvvv/4N+8ZvfOtCa1q0FtlD9pA9AED2kD1kL8iict2Xb7D/6aZ/5jQusofsAQAge8heJYrKj4ePRPaQPWQPAADZQ/YqVVRq6ubYf/Hv/4P9jwO+bQ+5e4R9/8OPX2gLX3sH2UP2kD0AQPaQPWQvyKLyL7cP6XJxRoQFGsgesgcAyB6yh+wFX1TmNL+Zlbqu2qq3P0b2kD1kDwCQPWQP2UNUkD1kD9kDAGQP2UP2tBGVzNzl9l/2/a/2s7H67AIN+byrJj+H7CF7yB4AIHvIHrIXMFGRU7Tq7vZvno8xZw/Z00r25A2G1GUhUwiQPQBA9pA9TuMiKmSoqez9ddXfZt9o/OyXv0P2AADZQ/aQvWKIykO/+E12yxXv9+at2pI9jZuc/Sqyh+yVTPYmp2dlRU+2ApL6e+PDFmQPAJA9ZA/Zy+d/lE5UJE/20vvyf/tqtmP17q93820/uHCaF9lD9kole98c+B27z3+8Olt3Un8ypxTZAwBkD9lD9vL8P+996NFu5+pJ+5Orrspuy4LsIXulkL2ZSzZk604WDG3YcTA7uifXakb2AADZQ/aQvTz/T+lQZQGGjKbI6F7uHnuFXD0D2UP2etq+/8O7s7LnvsH4wbDh2a+bFq1F9gAA2UP2kL1CWvMfdtlL33yfBRrIXtlkT1be/um/62X/3de+fslIn0wpQPYAANlD9pC9App0tDKKcuM3vnVJK2RUBdlD9noyyiwjybnbrcj3XtnwLrIHAMgesofsFdL+z78OZZ89ZK9ssidvKGRBxuc1ZA8AkD1kD9nLs1335Ruyc/ZkrlSxtrpA9pC9K22y+jtymYVCbkP2ACCQsid7mMnpM7mCgbeNeaYG2bvSg3jj/Oy2IV11DvkuMAib7A36l+9n6445e8heOWRPRo/dLX/+6aZ/zs7dk8Ua8rUcH//sz/88O/qM7AFA4GRPREQOal1JSiEdb9hkr+qLX8pm9oX/8lfZbRq8883yXXQQNtlrWLDSvvo/fcEe8fNfZze19a7ILeSSVcgespfP61n2f/R+T978Sn0WMuqM7AFAWWTP3TT052Ofzp4+E/lzm6yORPaurIkw5179gdO4PWtcGxfZ00X2pObkTYf3e088OamgkXpkDwDKJnvuhehlFRpz9vJv3x70v+3/+8DPkL0C2sR402eunuFthXSwyB6yl8/InmzmLW9ApP7ko7yhY2QPAAIle5m5yy+cIpOJ8bKHVO5mtoVctSBssvfY+OeynYFIn1wRwisq+Z6CDJvshV1UyFAf2ZPjo4idd3RZLp9WyDWakT0AKLnsdbeYIMKcvaLnyQKNK2+/mxS3b/jq17KjKvKGQybIS8eL7CF7pZQ9d889WXglU13kYzHOfiB7AFBS2ZPrPuauvmU1bmEjAbkjo27Lt5MIm+w9VZO+MILiyp6Mrsi1SVmggeyVWvZkzrKM5OW+npE9AAiM7LHPXnFlj332CheVfxzw7exlqmROlIyUSscqG92KAD4bq0f2kL2SyZ6sxI2wzx4AVJLsyTYX3mtBytYhcvqskInIYZA9WcEsUiKjepKZfN5Vy/cyS2HcVNmdOuDKnoyuSAcrp3eRvc9fzVzIaDyyd7HJnnrS3L0fvQ3ZA4DAyZ7sAScLC6S5p8pkzlSki60HetJuv+OOdvU7dnraYM9Dn5DnbU/oJHvujvsiJT7O2RsZhByLIXvyBkNO38pHOXUrG9jKFTXke/NWbcn799522+CWMGQYKXCebSVkWCzZk5qTRVfFzhHZA4CyyJ47T8o7CV5G9ET4ZLRKs5G9oh8oQ3oat+g5FkP2ZBRP5M4rytLpygiqhqNS2mVY6Ar6SsiwWLL3P797a/aqGcgeAFSE7MnpMelUc0dO5MoPInzI3pU3yfBnv/xdtpOQUVG5IgSy17MmbzRk5aOMqsgqyEL21wub7AVwzp62siejy3JclKkF3qvhSEP2ACBwsiedqYye/HXV317YH+6bA7+TPdDJil1k78rnPUqOkZxTuIWcCg+D7MnUge5WMWt+uTRkr4Jl73LTMpA9AAic7LkLDXJFRU6nFdLB+iR7I3WVPRkBkAndsoqvpm5O9tJKItCSq4bXxi16jvmKinsFl89rGl4uTZsMAyx7I/0o7mLIniyq8l460tuQPQAIpOy5I3xyStfdQLSQlbhhvTZu7iieSF8kZz4kq3EvrTv3SiMykixyLKfK5NJz7kINuSpJvsLM1iusxi1kU2UZsZdj4tpt+4sypQDZA4CSyp68c5UmB7Tu3sHKhHlk78ondMsl53L36vrCf/krNlW+wiarb2UKwWcymP1qVgC5Ni6yV0rZm7lkQ/a1644sy9dShzJij+wBQGBkz90D7nKn0TS8XJpWp3Enxpsu7L0lsieZyaIW+VpWMsvXsk+XhtfG1fIUpJwKlxy933M3VZbRFU7jchq3VLInr2O5eossuJL6k8VWUp8y0lzIZdOQPQAoqeyJhEiTzjR3tZnbZGSKBRqfv8/e5zUNr42r5eICqUfJS0ZIZR6pLBhyJ8r
|
|||
|
"text/plain": [
|
|||
|
"<IPython.core.display.Image object>"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 32,
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# Run this cell to download and view a schematic diagram for the decoder model\n",
|
|||
|
"\n",
|
|||
|
"!wget -q -O neural_translation_model.png --no-check-certificate \"https://docs.google.com/uc?export=download&id=1DTeaXD8tA8RjkpVrB2mr9csSBOY4LQiW\"\n",
|
|||
|
"Image(\"neural_translation_model.png\")"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "VPBK8WGL1ibS"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"You should now build the RNN decoder model.\n",
|
|||
|
"* Using Model subclassing, build the decoder network according to the following spec:\n",
|
|||
|
" * The initializer should create the following layers:\n",
|
|||
|
" * An Embedding layer with vocabulary size set to the number of unique German tokens, embedding dimension 128, and set to mask zero values in the input.\n",
|
|||
|
" * An LSTM layer with 512 units, that returns its hidden and cell states, and also returns sequences.\n",
|
|||
|
" * A Dense layer with number of units equal to the number of unique German tokens, and no activation function.\n",
|
|||
|
" * The call method should include the usual `inputs` argument, as well as the additional keyword arguments `hidden_state` and `cell_state`. The default value for these keyword arguments should be `None`.\n",
|
|||
|
" * The call method should pass the inputs through the Embedding layer, and then through the LSTM layer. If the `hidden_state` and `cell_state` arguments are provided, these should be used for the initial state of the LSTM layer. _Hint: use the_ `initial_state` _keyword argument when calling the LSTM layer on its input._\n",
|
|||
|
" * The call method should pass the LSTM output sequence through the Dense layer, and return the resulting Tensor, along with the hidden and cell states of the LSTM layer.\n",
|
|||
|
"* Using the Dataset `.take(1)` method, extract a batch of English and German data examples from the training Dataset. Test the decoder model by first calling the encoder model on the English data Tensor to get the hidden and cell states, and then call the decoder model on the German data Tensor and hidden and cell states, and print the shape of the resulting decoder Tensor outputs.\n",
|
|||
|
"* Print the model summary for the decoder network."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 33,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "5i5XkhtsGhsO"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"unique_tokens = len(tokenizer.word_index) + 1\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 34,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "l50qhnXD1ibT"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"class DecoderModel(Model):\n",
|
|||
|
" def __init__(self,initial_state=True,**kwargs):\n",
|
|||
|
" super(DecoderModel, self).__init__(**kwargs)\n",
|
|||
|
" self.embedding = Embedding(input_dim = unique_tokens,output_dim = 128,mask_zero = True)\n",
|
|||
|
" self.lstm = LSTM(512, return_sequences=True, return_state=True)\n",
|
|||
|
" self.dense = Dense(unique_tokens)\n",
|
|||
|
" self.initial_state = initial_state\n",
|
|||
|
"\n",
|
|||
|
" def call(self,inputs,hidden_state = None,cell_state = None):\n",
|
|||
|
" h = self.embedding(inputs)\n",
|
|||
|
" if hidden_state != None and cell_state != None:\n",
|
|||
|
" lstm,hidden_1,cell_1 = self.lstm(h,initial_state = [hidden_state,cell_state])\n",
|
|||
|
" else:\n",
|
|||
|
" lstm,hidden_1,cell_1 = self.lstm(h)\n",
|
|||
|
" h = self.dense(lstm)\n",
|
|||
|
" return h,hidden_1,cell_1\n",
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 35,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "vG5CRIXV1ibi"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"decoder_model = DecoderModel()\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 36,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 126
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "SvqqT_ET1ibl",
|
|||
|
"outputId": "f1ec691f-d17d-478c-cc7b-05f846334624"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"decoder output shape:\n",
|
|||
|
"tf.Tensor([ 16 14 5744], shape=(3,), dtype=int32)\n",
|
|||
|
"hidden state shape:\n",
|
|||
|
"tf.Tensor([ 16 512], shape=(2,), dtype=int32)\n",
|
|||
|
"cell state shape:\n",
|
|||
|
"tf.Tensor([ 16 512], shape=(2,), dtype=int32)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"for english,german in train_dataset.take(1):\n",
|
|||
|
" temp,hidden_1,cell_1 = decoder_model(german)\n",
|
|||
|
"print(\"decoder output shape:\")\n",
|
|||
|
"print(tf.shape(temp))\n",
|
|||
|
"print(\"hidden state shape:\")\n",
|
|||
|
"print(tf.shape(hidden_1))\n",
|
|||
|
"print(\"cell state shape:\")\n",
|
|||
|
"print(tf.shape(cell_1))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 37,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 272
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "wF3B3d2y9LCn",
|
|||
|
"outputId": "599233b8-01ef-4173-9269-f68402b147ce"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Model: \"decoder_model\"\n",
|
|||
|
"_________________________________________________________________\n",
|
|||
|
"Layer (type) Output Shape Param # \n",
|
|||
|
"=================================================================\n",
|
|||
|
"embedding (Embedding) multiple 735232 \n",
|
|||
|
"_________________________________________________________________\n",
|
|||
|
"lstm_1 (LSTM) multiple 1312768 \n",
|
|||
|
"_________________________________________________________________\n",
|
|||
|
"dense (Dense) multiple 2946672 \n",
|
|||
|
"=================================================================\n",
|
|||
|
"Total params: 4,994,672\n",
|
|||
|
"Trainable params: 4,994,672\n",
|
|||
|
"Non-trainable params: 0\n",
|
|||
|
"_________________________________________________________________\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"decoder_model.summary()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "pST9XGJ81ibo"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## 6. Make a custom training loop\n",
|
|||
|
"You should now write a custom training loop to train your custom neural translation model.\n",
|
|||
|
"* Define a function that takes a Tensor batch of German data (as extracted from the training Dataset), and returns a tuple containing German inputs and outputs for the decoder model (refer to schematic diagram above).\n",
|
|||
|
"* Define a function that computes the forward and backward pass for your translation model. This function should take an English input, German input and German output as arguments, and should do the following:\n",
|
|||
|
" * Pass the English input into the encoder, to get the hidden and cell states of the encoder LSTM.\n",
|
|||
|
" * These hidden and cell states are then passed into the decoder, along with the German inputs, which returns a sequence of outputs (the hidden and cell state outputs of the decoder LSTM are unused in this function).\n",
|
|||
|
" * The loss should then be computed between the decoder outputs and the German output function argument.\n",
|
|||
|
" * The function returns the loss and gradients with respect to the encoder and decoder’s trainable variables.\n",
|
|||
|
" * Decorate the function with `@tf.function`\n",
|
|||
|
"* Define and run a custom training loop for a number of epochs (for you to choose) that does the following:\n",
|
|||
|
" * Iterates through the training dataset, and creates decoder inputs and outputs from the German sequences.\n",
|
|||
|
" * Updates the parameters of the translation model using the gradients of the function above and an optimizer object.\n",
|
|||
|
" * Every epoch, compute the validation loss on a number of batches from the validation and save the epoch training and validation losses.\n",
|
|||
|
"* Plot the learning curves for loss vs epoch for both training and validation sets.\n",
|
|||
|
"\n",
|
|||
|
"_Hint: This model is computationally demanding to train. The quality of the model or length of training is not a factor in the grading rubric. However, to obtain a better model we recommend using the GPU accelerator hardware on Colab._"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 38,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "7hJHbWqs1ibr"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"def german_io(german_data):\n",
|
|||
|
" \n",
|
|||
|
" input_data = german_data[:,0:tf.shape(german_data)[1]-1]\n",
|
|||
|
" output_data = german_data[:,1:tf.shape(german_data)[1]]\n",
|
|||
|
" return(input_data,output_data)\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 39,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "CykC5OlL71VK"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True)\n",
|
|||
|
"\n",
|
|||
|
"optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 40,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "Jvu4J4-u1ibu"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"@tf.function\n",
|
|||
|
"def fb_passes(english_input,german_input,german_output):\n",
|
|||
|
" with tf.GradientTape() as tape:\n",
|
|||
|
" hidden_state ,cell_state = encoder_model(english_input)\n",
|
|||
|
" dense_output, _, _ = decoder_model(german_input, hidden_state, cell_state)\n",
|
|||
|
" loss = tf.math.reduce_mean(loss_object(german_output,dense_output))\n",
|
|||
|
" trainable_variables = encoder_model.trainable_variables + decoder_model.trainable_variables\n",
|
|||
|
" gradients = tape.gradient(loss, trainable_variables)\n",
|
|||
|
" return loss, gradients"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 42,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 1252,
|
|||
|
"referenced_widgets": [
|
|||
|
"7cf2f09cbb2e49baa326b070a57135b6",
|
|||
|
"a61b88812be7458e9384797ce7322974",
|
|||
|
"8f56f460ce0743adb631f81b47279032",
|
|||
|
"5ac9165d021f4013aa0943b6b4d78218",
|
|||
|
"3d6a8e27074349418cd71c5290f326b5",
|
|||
|
"0bbdb676c6f44fea87b6db3c5d3f4450",
|
|||
|
"fc62d2b357614a41a04a474d45311b2e",
|
|||
|
"f5263bdc9a1143289e04950c75cb57f7",
|
|||
|
"aaa773cbcae14260bdf841d28d29301b",
|
|||
|
"a0366ad869bc4e1e8237816dc4b3521b",
|
|||
|
"e58007a175724a93826f54ad010eb3e0",
|
|||
|
"2593f807e9054c629b228302b026fe78",
|
|||
|
"e1f1bd459a3e4fc29763bac02058bcc4",
|
|||
|
"3948b71f1b314f68b2d11ca915553e30",
|
|||
|
"d0b9276d37814f3e9fbe1caaad9e30d7",
|
|||
|
"eb69ae54b2794c698af7b7399c566aee",
|
|||
|
"eb8c2ad4b54e4322af6eaf9acb2146f9",
|
|||
|
"c82d275680734e5289db19cb909ee021",
|
|||
|
"1a44ba624b804903934006950be10946",
|
|||
|
"77fa3907e9f94a0ebe7dcae9fc452048",
|
|||
|
"efeac8374c38426f906da594f014959d",
|
|||
|
"14d9aa924abf48d7845629ced2003e60",
|
|||
|
"ec1f39d1218246db9625b116bf0046b5",
|
|||
|
"f5909acd99cc4cc984d2b5c8433ef031",
|
|||
|
"803248d7f99146919fc755a33d488aba",
|
|||
|
"062179ac0d2b48bcbb69c74d05a900e3",
|
|||
|
"b76f983e43cd4e71b7c7c062ded7d3d5",
|
|||
|
"47194203538f443fbdc98751785303f2",
|
|||
|
"6bc41a9601fd4e23833e7095a84bcc6a",
|
|||
|
"b33c81981277493ba2f6d83c20e2e21e",
|
|||
|
"6dbd979f74144c668d628d75abd2d6dd",
|
|||
|
"e42fea6d80ee41fa87eb05bf6619a171",
|
|||
|
"43909ce2bd4f494ca7f48dfa4df64ac4",
|
|||
|
"6d8f80f9f3c4430b83cc986c07513c9a",
|
|||
|
"f36b7603103b41afa037b1736ce7987c",
|
|||
|
"0aae27c452e24ff0bf6e87b3393109c2",
|
|||
|
"ca9714a20e7b48939748a81acd7815d7",
|
|||
|
"e1df1eda8fd946388b80cf7a753bb8d2",
|
|||
|
"2d67fd09c8d0414eb38f44790b4098fe",
|
|||
|
"4aea9d5a2e0a4084807550d0180374ce",
|
|||
|
"a13c646a04d24355a523f240b81c5613",
|
|||
|
"91ecd50ff6394107bf31db544b61847a",
|
|||
|
"678138fdac934d97a51537537e6d60cf",
|
|||
|
"44869506689c4caf9f401df6f3567e1f",
|
|||
|
"d543e2ba6e1d4791a834d818d2dfa85d",
|
|||
|
"67692bbfc09e45c7a462e5008b9547c5",
|
|||
|
"a01c8bc77dc44043ad075bf5dfe9cf60",
|
|||
|
"1be220b3c4b84ce18ff68ce962e9a949",
|
|||
|
"d5dd318e95cb4ff6b03aaa25233a5497",
|
|||
|
"be8601fb370b4df8a8fe9c4ec895c1f4",
|
|||
|
"3d0e43a0a080403b94b64e3e83909e9c",
|
|||
|
"720237b0357f4d5b9635cb5a975686bf",
|
|||
|
"eb9b6424c9f045b19a65d349c8004828",
|
|||
|
"2bcb448b88dd411aa0cee1979281e041",
|
|||
|
"9f3cfc90bd844f75b29e8a5615e5fd40",
|
|||
|
"bf6a570468014399b38142fc9a22fd76",
|
|||
|
"f85725cd811c41049ca3b4a1a1d8d52b",
|
|||
|
"fae25072555940479f91fe5fe7027ef5",
|
|||
|
"ef88874f5bc346c393e6bbb6e18562f7",
|
|||
|
"2b720265187e48e1a35107e338a9a999",
|
|||
|
"21bc74bd84ad4daba065f1772ed662fd",
|
|||
|
"5396e1fd60504686b6c9bc64fb4a4d06",
|
|||
|
"c473432110a24a788d9abf8d15425deb",
|
|||
|
"771ed83b268a4f66b226abae17711c6f",
|
|||
|
"77ee6c65243d4aea94c0ca6f324e9600",
|
|||
|
"bb98fe55077e456b8816a15522976bf9",
|
|||
|
"5728de623f4c4440b9b49f92c2c95910",
|
|||
|
"235185543ac74a9984ed589ae4df2c47",
|
|||
|
"5b4f4314bc894bc9a810bdf1b622857b",
|
|||
|
"5f12262f399a402a80641ef275c3e6c2",
|
|||
|
"d9740797e3754ef385f6f8336cbe6fac",
|
|||
|
"c27f6a8a581741388b6b6a76097962b9",
|
|||
|
"e185261a681f4af0bdb2e3823e3891b6",
|
|||
|
"76d7f0a0ba2f444eacaa6ac45eadeb8b",
|
|||
|
"7365309c89e144b1b9235fb9c758aa82",
|
|||
|
"13a52a32bbb040309a1c777f87f29bb1",
|
|||
|
"72b499272b804968bd9732141dc021cb",
|
|||
|
"929e4d34db9c47b5abeb6e8e6527e40d",
|
|||
|
"bbdb4c77129e47e2bdbc9f595a2aa2db",
|
|||
|
"483e36286fe34ab2bbbe30683736c09d",
|
|||
|
"480c4b953af740848089472d2b12f54f",
|
|||
|
"506b8e8184934f31acfc219574d48aff",
|
|||
|
"3b45631e38144ad1859402a2944c936d",
|
|||
|
"ed916bc1bd1242d3a68568625c73417d",
|
|||
|
"ee3e8f88a4ef45979d7ca5e30ad9c125",
|
|||
|
"282b77cd3c4c4d8aa3fa66aad2cc579f",
|
|||
|
"2eeda4cb83aa44ea916d98091e5f2bae",
|
|||
|
"2eacf0a522cb42929f123e2b46b24aa3",
|
|||
|
"c00601a1aea542d6b7e2626f19b8f038",
|
|||
|
"0b06f6925dbf42d48e7e90c4f6c5d999",
|
|||
|
"2a26535ac3a746dfbcaa1e41d64a622d",
|
|||
|
"5893aac2ec524ccf8d307f8fefbe5600",
|
|||
|
"77e5649da409410abd7f1e8363ff16e0",
|
|||
|
"5d349e33912a4c69b47c5ae49853a34c",
|
|||
|
"dd2540db949d42748cdfe86b49e1f63e",
|
|||
|
"0c9dcfe6797b4089a47b1778bfb12dc0",
|
|||
|
"78a2ee48e8744d7dbd4095e7d0de5a0a",
|
|||
|
"9bb82a154d00476d861a90eaf105c994",
|
|||
|
"ef6fc0069caa408681ed24e43b075c31",
|
|||
|
"fd2bd8c066944b2bb3681179d1e773d0",
|
|||
|
"631b21b11c5a45879c4f5070dc0feaf1",
|
|||
|
"87daeb0bd0754c75b5661f7840233ad0",
|
|||
|
"8953c30291cf4f699814869d4b5a09c3",
|
|||
|
"ba293c1ad08b435db5558ddf5f82baaa",
|
|||
|
"b6129ba9f3b84f3b9fdbde3ea309cad2",
|
|||
|
"198803aa7c9a45dbaf88e265562cec93",
|
|||
|
"67773255ad0d4f1e9547aa99893c5783",
|
|||
|
"6f805de20301483480f3b17d495c7e3f",
|
|||
|
"e40a6afc8cd3425199bb0787f4b10f6d",
|
|||
|
"ed76467bae354c5197fc851cfee38704",
|
|||
|
"3ac927282a364bf9a1a3b180772ab840",
|
|||
|
"89077b33906c4e73a5af69151ff3a697",
|
|||
|
"a668e92a47644d52b97309a0b4c5b69b",
|
|||
|
"4b18e248eca649b9bec73bea37b5c11a",
|
|||
|
"30d271d2736a4d978d3e82bfe56eabc2",
|
|||
|
"1d37494429ea4c94b6a04d777e102288",
|
|||
|
"b41dc937f8c440c0ae891ce92ea1429e",
|
|||
|
"428fed747b004809964f74862290b10e",
|
|||
|
"830f327e49fe457f977d507460ceae7c",
|
|||
|
"2ba405c81c874e678f65c4dfe8522e91",
|
|||
|
"1d836faa041e49bfb60069abae3388dc",
|
|||
|
"b450702e1ec544ec9a4ea23952810a30",
|
|||
|
"edd5097c68f34aceb7b864e24ccccf4d",
|
|||
|
"c30365ecb3d84928907be05d41656ecd",
|
|||
|
"29b12965e6734707b300c42529f1c434",
|
|||
|
"26a0a00f29d749c583b9bb3daf0068f4",
|
|||
|
"5b4da417f7c14198857f103fe0ec21fb",
|
|||
|
"5a921281ee6b42bab84f09fe3947a94a",
|
|||
|
"8d32d1e1e9914826870413592b41b10b",
|
|||
|
"be66e21ac4a24a2d81b776f14a3806b0",
|
|||
|
"a09cfde07faa4705ae747aff01a1583d",
|
|||
|
"c8c5a85ed6ce4411b0aa5779c4b7e978",
|
|||
|
"539571ba1f43413593c939524bbd2d1b",
|
|||
|
"4cd46a0bcd284b1db0211389fe3ad7ec",
|
|||
|
"ffce7755cefa4c688d4eab7cd9876674",
|
|||
|
"5b76bc51b4494c0fb95df76ab2fb1d65",
|
|||
|
"68600582496043389e99e8b8a9aa88ab",
|
|||
|
"af7f03e4bb454dccbc41f71a3f928966",
|
|||
|
"3459b019efd740fca23d7ba661a7f29b",
|
|||
|
"645160414a094c2d80982b9acaeec514",
|
|||
|
"4c60c8f3fd1844efaccef38f5b81838e",
|
|||
|
"7f00757074234050b67266815b0d60ee",
|
|||
|
"0b9b818e1d404904895a9e55d75a9365",
|
|||
|
"9d8745f319584c6ea64bb9af0bde2790",
|
|||
|
"2644b241608a46ab9a032bfc8e31e263",
|
|||
|
"900a79e911f14c648599db9d99c15dd0",
|
|||
|
"29ea5efaf26f4416bd5a1d27284e42f7",
|
|||
|
"19174ad2f0334918ae64ee5d5c1350f8",
|
|||
|
"5de3d949221643deabc9d182baa5c46d",
|
|||
|
"8208c8bce4594578aa3931dae0187e41",
|
|||
|
"25c48651674747ad928ec3a6f4e68c8c",
|
|||
|
"a384224fbe1f4655b65e2176681ea327",
|
|||
|
"0694697d66344a34994953682f8bf350",
|
|||
|
"e36ae6801f864a11a5838cf9ed4ba353",
|
|||
|
"e6e7fc5c6cc34762855f85d90369a60f",
|
|||
|
"94153c16c4a44ed4a0dcccb0a750d361",
|
|||
|
"ae1ad1e6d4414093bbaee30ef5f7c64c",
|
|||
|
"2e7ec1c896904a79ae2924a0c072c9f4",
|
|||
|
"3283a19b26ab4019b0df651228ae6bd4",
|
|||
|
"842fe98ab1544003a3410feb0ea2489d",
|
|||
|
"0122fad2eef947b98affc30bb5d523f0",
|
|||
|
"d9605817015940aab431158b5b132ba6",
|
|||
|
"ce81663a9ca146aeb8b3e1975bf802ad",
|
|||
|
"7243954bcaa941f49d2e3f81b4ad11c6",
|
|||
|
"415b9b7ca7254a89b742425f8d8ea152",
|
|||
|
"8acb2018f7854a839fc18946c1f931f7",
|
|||
|
"ce002367634e4ea198e91c66393ea2e9",
|
|||
|
"d46e63ac23794b049ebee823eaf35c7c"
|
|||
|
]
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "AhMJRoJmJn-g",
|
|||
|
"outputId": "5eca09e7-07b3-45a6-8584-de4796b35af0"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "7cf2f09cbb2e49baa326b070a57135b6",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=10.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "aaa773cbcae14260bdf841d28d29301b",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=1000.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "eb8c2ad4b54e4322af6eaf9acb2146f9",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=250.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n",
|
|||
|
"Epoch 01: Avg. training loss = 4.303783, Avg. validation loss = 3.971151 \n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "803248d7f99146919fc755a33d488aba",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=1000.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "43909ce2bd4f494ca7f48dfa4df64ac4",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=250.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n",
|
|||
|
"Epoch 02: Avg. training loss = 3.408585, Avg. validation loss = 3.229689 \n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "a13c646a04d24355a523f240b81c5613",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=1000.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "d5dd318e95cb4ff6b03aaa25233a5497",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=250.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n",
|
|||
|
"Epoch 03: Avg. training loss = 2.586687, Avg. validation loss = 2.563772 \n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "f85725cd811c41049ca3b4a1a1d8d52b",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=1000.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "77ee6c65243d4aea94c0ca6f324e9600",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=250.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n",
|
|||
|
"Epoch 04: Avg. training loss = 1.840311, Avg. validation loss = 1.982391 \n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "e185261a681f4af0bdb2e3823e3891b6",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=1000.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "480c4b953af740848089472d2b12f54f",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=250.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n",
|
|||
|
"Epoch 05: Avg. training loss = 1.217730, Avg. validation loss = 1.538847 \n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "c00601a1aea542d6b7e2626f19b8f038",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=1000.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "78a2ee48e8744d7dbd4095e7d0de5a0a",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=250.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n",
|
|||
|
"Epoch 06: Avg. training loss = 0.775655, Avg. validation loss = 1.278047 \n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "b6129ba9f3b84f3b9fdbde3ea309cad2",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=1000.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "a668e92a47644d52b97309a0b4c5b69b",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=250.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n",
|
|||
|
"Epoch 07: Avg. training loss = 0.510702, Avg. validation loss = 1.157365 \n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "1d836faa041e49bfb60069abae3388dc",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=1000.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "8d32d1e1e9914826870413592b41b10b",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=250.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n",
|
|||
|
"Epoch 08: Avg. training loss = 0.357175, Avg. validation loss = 1.111811 \n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "68600582496043389e99e8b8a9aa88ab",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=1000.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "2644b241608a46ab9a032bfc8e31e263",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=250.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n",
|
|||
|
"Epoch 09: Avg. training loss = 0.266191, Avg. validation loss = 1.098457 \n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "0694697d66344a34994953682f8bf350",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=1000.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"application/vnd.jupyter.widget-view+json": {
|
|||
|
"model_id": "0122fad2eef947b98affc30bb5d523f0",
|
|||
|
"version_major": 2,
|
|||
|
"version_minor": 0
|
|||
|
},
|
|||
|
"text/plain": [
|
|||
|
"HBox(children=(FloatProgress(value=0.0, max=250.0), HTML(value='')))"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
},
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"\n",
|
|||
|
"Epoch 10: Avg. training loss = 0.204196, Avg. validation loss = 1.086921 \n",
|
|||
|
"\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"train_loss_results = []\n",
|
|||
|
"val_loss_results = []\n",
|
|||
|
"\n",
|
|||
|
"for epoch in tqdm(range(10)):\n",
|
|||
|
" \n",
|
|||
|
" epoch_loss = 0\n",
|
|||
|
" batch_no = 0\n",
|
|||
|
" with tqdm(total= 1000) as t:\n",
|
|||
|
" for english,german in train_dataset:\n",
|
|||
|
" german_input, german_output = german_io(german)\n",
|
|||
|
" loss, gradients = fb_passes(english, german_input, german_output)\n",
|
|||
|
" epoch_loss += loss\n",
|
|||
|
" batch_no += 1\n",
|
|||
|
" optimizer.apply_gradients(zip(gradients, encoder_model.trainable_variables + decoder_model.trainable_variables))\n",
|
|||
|
" epoch_avg_loss = epoch_loss / batch_no\n",
|
|||
|
" train_loss_results.append(epoch_avg_loss)\n",
|
|||
|
" t.update(1)\n",
|
|||
|
" epoch_val_loss = 0\n",
|
|||
|
" val_batch_no = 0\n",
|
|||
|
" with tqdm(total= 250) as t:\n",
|
|||
|
" for val_english,val_german in valid_dataset:\n",
|
|||
|
" german_input, german_output = german_io(val_german)\n",
|
|||
|
" loss, _ = fb_passes(val_english, german_input, german_output)\n",
|
|||
|
" epoch_val_loss += loss\n",
|
|||
|
" val_batch_no += 1\n",
|
|||
|
" epoch_avg_val_loss = epoch_val_loss / val_batch_no\n",
|
|||
|
" val_loss_results.append(epoch_avg_val_loss)\n",
|
|||
|
" t.update(1)\n",
|
|||
|
" print(\"Epoch {:02d}: Avg. training loss = {:.6f}, Avg. validation loss = {:.6f} \".format(epoch + 1,epoch_avg_loss,epoch_avg_val_loss))\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 53,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 621
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "mWIlf_y2YHfl",
|
|||
|
"outputId": "b8cca73c-e388-46b8-99fa-d8b8639ba6d5"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAJcCAYAAACxEXM4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUVf7H8fc3HRJ6Qkd6CCA9oBQVEQVprl3WxlpxLYt17WLvytrr6q4NXQuCgigKgqJgQEADhF4CCgEEQgmknN8fifwQA4SQyZmZfF7PM4+TuXfufCb46Idzzz3XnHOIiIiISPmK8B1AREREpCJSCRMRERHxQCVMRERExAOVMBEREREPVMJEREREPFAJExEREfFAJUxEJMiY2TAz+8Z3DhEJLJUwEQk4M1thZn195ygNM+ttZgVmtm2fR3ff2UQktEX5DiAiEgLWOuca+g4hIuFFI2Ei4o2ZxZrZKDNbW/QYZWaxRdsSzewTM9tsZpvMbJqZRRRt+6eZrTGzbDPLMLMTijn2UWb2q5lF7vXaqWY2r+h5NzNLM7OtZrbOzJ4o5XeYYmYPmtnMomN9bGY199o+xMzSi77HFDNrvde2Rmb2oZllmdlGM3tmn2M/Zma/mdlyMzu5NPlEJHiphImIT7cBRwMdgQ5AN+D2om3XA5lAElAHuBVwZtYKuAro6pyrAvQDVux7YOfcDGA70Gevl/8KvF30/F/Av5xzVYHmwHuH8T0uAC4C6gF5wFMAZpYMvAOMKPoe44FxZhZTVA4/AVYCTYAGwOi9jnkUkAEkAo8Ar5qZHUZGEQkyKmEi4tO5wD3OufXOuSzgbuD8om25FJaaxs65XOfcNFd4s9t8IBZoY2bRzrkVzrml+zn+O8BQADOrAgwoeu3347cws0Tn3Dbn3PcHyFm/aCRr70f8XtvfcM797JzbDtwBnFVUss4GPnXOfeGcywUeAyoBPSgsnPWBG51z251zOc65vSfjr3TOveycywf+U/S7qHPA36aIhBSVMBHxqT6FI0G/W1n0GsCjwBLgczNbZmY3AzjnllA4sjQSWG9mo82sPsV7Gzit6BTnacBs59zvn3cxkAwsNLMfzGzQAXKudc5V3+exfa/tq/f5DtEUjmD94fs55wqK9m0ANKKwaOXt5zN/3et9O4qeJhwgo4iEGJUwEfFpLdB4r5+PKHoN51y2c+5651wzYAhw3e9zv5xzbzvnehW91wEPF3dw59x8CkvQyfzxVCTOucXOuaFA7aL3v7/P6NahaLTPd8gFNuz7/YpOJzYC1lBYxo4wM10gJVJBqYSJSHmJNrO4vR5RFJ4avN3MkswsEbgTeBPAzAaZWYui4rKFwtOQBWbWysz6FI1u5QA7gYIDfO7bwD+AY4H//f6imZ1nZklFo1Obi14+0HEO5Dwza2NmlYF7gPeLTiO+Bww0sxPMLJrCeW67gOnATOAX4CEziy/6nfQs5eeLSAhSCROR8jKewsL0+2MkcB+QBswDfgJmF70G0BKYBGwDvgOec85NpnA+2EMUjjT9SuFI1i0H+Nx3gOOAr5xzG/Z6vT+QbmbbKJykf45zbud+jlG/mHXCTt9r+xvA60V54oBrAJxzGcB5wNNFeQcDg51zu4tK2mCgBbCKwosQzj7A9xCRMGOF81xFRKQ0zGwK8KZz7hXfWUQktGgkTERERMQDlTARERERD3Q6UkRERMQDjYSJiIiIeBBy69MkJia6Jk2a+I4hIiIiclCzZs3a4JxLKm5byJWwJk2akJaW5juGiIiIyEGZ2cr9bdPpSBEREREPVMJEREREPFAJExEREfEg5OaEiYiIyOHLzc0lMzOTnJwc31HCQlxcHA0bNiQ6OrrE71EJExERqYAyMzOpUqUKTZo0wcx8xwlpzjk2btxIZmYmTZs2LfH7dDpSRESkAsrJyaFWrVoqYGXAzKhVq9YhjyqqhImIiFRQKmBlpzS/y4CXMDOLNLMfzeyTYrbFmtm7ZrbEzGaYWZNA5xEREREJBuUxEvYPYMF+tl0M/OacawE8CTxcDnlERETEo40bN9KxY0c6duxI3bp1adCgwZ6fd+/efcD3pqWlcc011xz0M3r06FFWcQMmoBPzzawhMBC4H7iumF1OAUYWPX8feMbMzOmu4iIiImGrVq1azJkzB4CRI0eSkJDADTfcsGd7Xl4eUVHFV5TU1FRSU1MP+hnTp08vm7ABFOiRsFHATUDBfrY3AFYDOOfygC1ArX13MrPLzCzNzNKysrIClVVEREQ8GTZsGMOHD+eoo47ipptuYubMmXTv3p1OnTrRo0cPMjIyAJgyZQqDBg0CCgvcRRddRO/evWnWrBlPPfXUnuMlJCTs2b93796cccYZpKSkcO655/L7WM/48eNJSUmhS5cuXHPNNXuOW14CNhJmZoOA9c65WWbW+3CO5Zx7CXgJIDU1VaNkIiIiZejucenMX7u1TI/Zpn5V7hrc9pDek5mZyfTp04mMjGTr1q1MmzaNqKgoJk2axK233soHH3zwp/csXLiQyZMnk52dTatWrbjiiiv+tFbXjz/+SHp6OvXr16dnz558++23pKamcvnllzN16lSaNm3K0KFDD+v7lkYgT0f2BIaY2QAgDqhqZm86587ba581QCMg08yigGrAxgBmEhERkSB15plnEhkZCcCWLVu48MILWbx4MWZGbm5use8ZOHAgsbGxxMbGUrt2bdatW0fDhg3/sE+3bt32vNaxY0dWrFhBQkICzZo127Ou19ChQ3nppZcC+O3+LGAlzDl3C3ALQNFI2A37FDCAscCFwHfAGcBXmg8mIiJSvg51xCpQ4uPj9zy/4447OP744/noo49YsWIFvXv3LvY9sbGxe55HRkaSl5dXqn18KPd1wszsHjMbUvTjq0AtM1tC4cT9m8s7j4iIiASfLVu20KBBAwBef/31Mj9+q1atWLZsGStWrADg3XffLfPPOJhyKWHOuSnOuUFFz+90zo0tep7jnDvTOdfCOdfNObesPPKIiIhIcLvpppu45ZZb6NSpU0BGripVqsRzzz1H//796dKlC1WqVKFatWpl/jkHYqF29i81NdWlpaX5jiEiIhLSFixYQOvWrX3H8Grbtm0kJCTgnOPKK6+kZcuWXHvttaU+XnG/UzOb5Zwrdk0N3bZIREREKqSXX36Zjh070rZtW7Zs2cLll19erp8f0MVaRURERILVtddee1gjX4dLI2EiIiIiHqiEiYiIiHigEiYiIiLigeaE7WPJ+m1c9t804qIjiYuOoFJMJEkJsdSpFke9qnE0r51ASt2qJFWJPfjBRERERPZDI2H7iImMoE39qtSvHkflmCh27s5n1qrfeO2bFYwcN5/zX51J1/snkXrfF1zynx94Zdoy0tduoaAgtJb6EBER8en4449n4sSJf3ht1KhRXHHFFcXu37t3b35fomrAgAFs3rz5T/uMHDmSxx577ICfO2bMGObPn7/n5zvvvJNJkyYdavwyoZGwfRxRqzLP/LXzn153zrFh224Wr89mwS/ZzF+7lVkrNzFpwXoAEhNi6de2DicfWY+jm9UkKlL9VkREZH+GDh3K6NGj6dev357XRo8ezSOPPHLQ944fP77UnztmzBgGDRpEmzZtALjnnntKfazDpaZQQmZGUpVYejRP5OJeTXn8rA5MufF4pt/chyfO6sBRTWvy4ew1nPfqDI5+8EsenLCAFRu2+44tIiISlM444ww+/fRTdu/eDcCKFStYu3Yt77zzDqmpqbRt25a77rqr2Pc2adKEDRs2AHD//feTnJxMr169yMjI2LPPyy+/TNeuXenQoQOnn346O3bsYPr06YwdO5Ybb7yRjh07snTpUoYNG8b7778PwJdffkmnTp1o164dF110Ebt27drzeXfddRedO3emXbt2LFy4sEx+BxoJO0z1q1fitM4NOa1zQ3buzufrRev5cPYaXpm2nBe/XkavFolcemwzjm2ZiJn5jisiIvJnE26GX38q22PWbQcnP7TfzTVr1qRbt25MmDCBU045hdGjR3PWWWdx6623UrNmTfLz8znhhBO
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 720x720 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light",
|
|||
|
"tags": []
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"epoch_range = range(0,10)\n",
|
|||
|
"from scipy.ndimage.filters import gaussian_filter1d\n",
|
|||
|
"train_smoothed = gaussian_filter1d(train_loss_results, sigma=1500)\n",
|
|||
|
"valid_smoothed = gaussian_filter1d(val_loss_results, sigma=1500)\n",
|
|||
|
"\n",
|
|||
|
"# The graph is inconsistent due to smaller data used to make training faster\n",
|
|||
|
"fig = plt.figure(figsize = (10, 10))\n",
|
|||
|
"ax = fig.add_subplot(1,1,1)\n",
|
|||
|
"ax.plot(train_smoothed, label=\"Training\")\n",
|
|||
|
"ax.plot(valid_smoothed, label=\"Validation\")\n",
|
|||
|
"ax.legend(loc='best')\n",
|
|||
|
"ax.set_title(\"Loss vs Epoch\")\n",
|
|||
|
"ax.set_xticklabels(epoch_range)\n",
|
|||
|
"ax.set_xlabel(\"Epoch number\")\n",
|
|||
|
"ax.set_ylabel(\"Avg. loss\") \n",
|
|||
|
"\n",
|
|||
|
"fig.show()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"colab_type": "text",
|
|||
|
"id": "xM2gvBM11ib-"
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## 7. Use the model to translate\n",
|
|||
|
"Now it's time to put your model into practice! You should run your translation for five randomly sampled English sentences from the dataset. For each sentence, the process is as follows:\n",
|
|||
|
"* Preprocess and embed the English sentence according to the model requirements.\n",
|
|||
|
"* Pass the embedded sentence through the encoder to get the encoder hidden and cell states.\n",
|
|||
|
"* Starting with the special `\"<start>\"` token, use this token and the final encoder hidden and cell states to get the one-step prediction from the decoder, as well as the decoder’s updated hidden and cell states.\n",
|
|||
|
"* Create a loop to get the next step prediction and updated hidden and cell states from the decoder, using the most recent hidden and cell states. Terminate the loop when the `\"<end>\"` token is emitted, or when the sentence has reached a maximum length.\n",
|
|||
|
"* Decode the output token sequence into German text and print the English text and the model's German translation."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 59,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "hCgiIBiniZTe"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"random_ind = np.random.choice(20000,5)\n",
|
|||
|
"examples = []\n",
|
|||
|
"for ind in random_ind:\n",
|
|||
|
" examples.append(data_examples[ind])\n",
|
|||
|
"english_sentences = [sentence.split('\\t')[0] for sentence in examples]\n",
|
|||
|
"processed_english = []\n",
|
|||
|
"for sentence in english_sentences:\n",
|
|||
|
" processed_english.append(preprocess_sentence(sentence))\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 60,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "bGnQtE7L1icA"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"\n",
|
|||
|
"\n",
|
|||
|
"start = tokenizer.word_index['<start>']\n",
|
|||
|
"end = tokenizer.word_index['<end>']\n",
|
|||
|
"examples_tokens = []\n",
|
|||
|
"for p_english in processed_english:\n",
|
|||
|
" english = tf.strings.split(p_english,sep = \" \")\n",
|
|||
|
" english = embedding_layer(english)\n",
|
|||
|
" english = tf.pad(english, [[13-len(english), 0], [0, 0]], constant_values = 0)\n",
|
|||
|
" english = tf.expand_dims(english, 0)\n",
|
|||
|
" hidden_state, cell_state = encoder_model(english)\n",
|
|||
|
" translated_tokens = []\n",
|
|||
|
" tf_token = tf.Variable([[start]])\n",
|
|||
|
" while True:\n",
|
|||
|
" output_1,hidden_state, cell_state = decoder_model(tf_token, hidden_state, cell_state)\n",
|
|||
|
" output_2 = tf.argmax(output_1, 2).numpy()[0,0]\n",
|
|||
|
" tf_token = tf.Variable([[output_2]])\n",
|
|||
|
" if output_2 == end:\n",
|
|||
|
" break\n",
|
|||
|
" else:\n",
|
|||
|
" translated_tokens.append(output_2)\n",
|
|||
|
" examples_tokens.append(translated_tokens)\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 61,
|
|||
|
"metadata": {
|
|||
|
"colab": {},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "Unk60cEy1icI"
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"inv_german_index = {value:key for key,value in tokenizer.word_index.items()}\n",
|
|||
|
"german_sentences = []\n",
|
|||
|
"for example_token in examples_tokens:\n",
|
|||
|
" output_words = []\n",
|
|||
|
" for token in example_token:\n",
|
|||
|
" output_words.append(inv_german_index[token])\n",
|
|||
|
" output = \" \".join(output_words)\n",
|
|||
|
" german_sentences.append(output)\n",
|
|||
|
" "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 62,
|
|||
|
"metadata": {
|
|||
|
"colab": {
|
|||
|
"base_uri": "https://localhost:8080/",
|
|||
|
"height": 181
|
|||
|
},
|
|||
|
"colab_type": "code",
|
|||
|
"id": "QZtLHihbbBcG",
|
|||
|
"outputId": "da09ba59-f280-41f2-cac6-6d80c0db50e6"
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"+--------------------+----------------------------+\n",
|
|||
|
"| English sentences | German Translations |\n",
|
|||
|
"+--------------------+----------------------------+\n",
|
|||
|
"| Tom may be out. | tom wird sich verspaeten . |\n",
|
|||
|
"| Are you blushing? | bist du ueber achtzehn ? |\n",
|
|||
|
"| Is it popular? | ist es etwas ernstes ? |\n",
|
|||
|
"| I have a solution. | ich habe eine meinung . |\n",
|
|||
|
"| I'm starved. | ich bin verletzt . |\n",
|
|||
|
"+--------------------+----------------------------+\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"table = PrettyTable(['English sentences', 'German Translations'])\n",
|
|||
|
"for english,german in zip(english_sentences,german_sentences):\n",
|
|||
|
" table.add_row([english,german])\n",
|
|||
|
" \n",
|
|||
|
"print(table)"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"accelerator": "GPU",
|
|||
|
"colab": {
|
|||
|
"collapsed_sections": [],
|
|||
|
"name": "Translation Capstone Project.ipynb",
|
|||
|
"provenance": []
|
|||
|
},
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.7.6"
|
|||
|
},
|
|||
|
"widgets": {
|
|||
|
"application/vnd.jupyter.widget-state+json": {
|
|||
|
"0122fad2eef947b98affc30bb5d523f0": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_ce81663a9ca146aeb8b3e1975bf802ad",
|
|||
|
"IPY_MODEL_7243954bcaa941f49d2e3f81b4ad11c6"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_d9605817015940aab431158b5b132ba6"
|
|||
|
}
|
|||
|
},
|
|||
|
"062179ac0d2b48bcbb69c74d05a900e3": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"0694697d66344a34994953682f8bf350": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_e6e7fc5c6cc34762855f85d90369a60f",
|
|||
|
"IPY_MODEL_94153c16c4a44ed4a0dcccb0a750d361"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_e36ae6801f864a11a5838cf9ed4ba353"
|
|||
|
}
|
|||
|
},
|
|||
|
"0aae27c452e24ff0bf6e87b3393109c2": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_4aea9d5a2e0a4084807550d0180374ce",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_2d67fd09c8d0414eb38f44790b4098fe",
|
|||
|
"value": " 250/250 [17:06<00:00, 4.11s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"0b06f6925dbf42d48e7e90c4f6c5d999": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"0b9b818e1d404904895a9e55d75a9365": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"0bbdb676c6f44fea87b6db3c5d3f4450": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"0c9dcfe6797b4089a47b1778bfb12dc0": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"13a52a32bbb040309a1c777f87f29bb1": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_483e36286fe34ab2bbbe30683736c09d",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_bbdb4c77129e47e2bdbc9f595a2aa2db",
|
|||
|
"value": " 1000/1000 [34:27<00:00, 2.07s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"14d9aa924abf48d7845629ced2003e60": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"19174ad2f0334918ae64ee5d5c1350f8": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_a384224fbe1f4655b65e2176681ea327",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_25c48651674747ad928ec3a6f4e68c8c",
|
|||
|
"value": " 250/250 [23:18<00:00, 5.59s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"198803aa7c9a45dbaf88e265562cec93": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"1a44ba624b804903934006950be10946": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_14d9aa924abf48d7845629ced2003e60",
|
|||
|
"max": 250,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_efeac8374c38426f906da594f014959d",
|
|||
|
"value": 250
|
|||
|
}
|
|||
|
},
|
|||
|
"1be220b3c4b84ce18ff68ce962e9a949": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"1d37494429ea4c94b6a04d777e102288": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_2ba405c81c874e678f65c4dfe8522e91",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_830f327e49fe457f977d507460ceae7c",
|
|||
|
"value": " 250/250 [12:33<00:00, 3.01s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"1d836faa041e49bfb60069abae3388dc": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_edd5097c68f34aceb7b864e24ccccf4d",
|
|||
|
"IPY_MODEL_c30365ecb3d84928907be05d41656ecd"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_b450702e1ec544ec9a4ea23952810a30"
|
|||
|
}
|
|||
|
},
|
|||
|
"21bc74bd84ad4daba065f1772ed662fd": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"235185543ac74a9984ed589ae4df2c47": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_c27f6a8a581741388b6b6a76097962b9",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_d9740797e3754ef385f6f8336cbe6fac",
|
|||
|
"value": " 250/250 [41:47<00:00, 10.03s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"2593f807e9054c629b228302b026fe78": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_eb69ae54b2794c698af7b7399c566aee",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_d0b9276d37814f3e9fbe1caaad9e30d7",
|
|||
|
"value": " 1000/1000 [29:17<00:00, 1.76s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"25c48651674747ad928ec3a6f4e68c8c": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"2644b241608a46ab9a032bfc8e31e263": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_29ea5efaf26f4416bd5a1d27284e42f7",
|
|||
|
"IPY_MODEL_19174ad2f0334918ae64ee5d5c1350f8"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_900a79e911f14c648599db9d99c15dd0"
|
|||
|
}
|
|||
|
},
|
|||
|
"26a0a00f29d749c583b9bb3daf0068f4": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"282b77cd3c4c4d8aa3fa66aad2cc579f": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"29b12965e6734707b300c42529f1c434": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"29ea5efaf26f4416bd5a1d27284e42f7": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_8208c8bce4594578aa3931dae0187e41",
|
|||
|
"max": 250,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_5de3d949221643deabc9d182baa5c46d",
|
|||
|
"value": 250
|
|||
|
}
|
|||
|
},
|
|||
|
"2a26535ac3a746dfbcaa1e41d64a622d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_5d349e33912a4c69b47c5ae49853a34c",
|
|||
|
"max": 1000,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_77e5649da409410abd7f1e8363ff16e0",
|
|||
|
"value": 1000
|
|||
|
}
|
|||
|
},
|
|||
|
"2b720265187e48e1a35107e338a9a999": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_771ed83b268a4f66b226abae17711c6f",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_c473432110a24a788d9abf8d15425deb",
|
|||
|
"value": " 1000/1000 [49:28<00:00, 2.97s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"2ba405c81c874e678f65c4dfe8522e91": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"2bcb448b88dd411aa0cee1979281e041": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"2d67fd09c8d0414eb38f44790b4098fe": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"2e7ec1c896904a79ae2924a0c072c9f4": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"2eacf0a522cb42929f123e2b46b24aa3": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"2eeda4cb83aa44ea916d98091e5f2bae": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"30d271d2736a4d978d3e82bfe56eabc2": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_428fed747b004809964f74862290b10e",
|
|||
|
"max": 250,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_b41dc937f8c440c0ae891ce92ea1429e",
|
|||
|
"value": 250
|
|||
|
}
|
|||
|
},
|
|||
|
"3283a19b26ab4019b0df651228ae6bd4": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"3459b019efd740fca23d7ba661a7f29b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_7f00757074234050b67266815b0d60ee",
|
|||
|
"max": 1000,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_4c60c8f3fd1844efaccef38f5b81838e",
|
|||
|
"value": 1000
|
|||
|
}
|
|||
|
},
|
|||
|
"3948b71f1b314f68b2d11ca915553e30": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"3ac927282a364bf9a1a3b180772ab840": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"3b45631e38144ad1859402a2944c936d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_282b77cd3c4c4d8aa3fa66aad2cc579f",
|
|||
|
"max": 250,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_ee3e8f88a4ef45979d7ca5e30ad9c125",
|
|||
|
"value": 250
|
|||
|
}
|
|||
|
},
|
|||
|
"3d0e43a0a080403b94b64e3e83909e9c": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_2bcb448b88dd411aa0cee1979281e041",
|
|||
|
"max": 250,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_eb9b6424c9f045b19a65d349c8004828",
|
|||
|
"value": 250
|
|||
|
}
|
|||
|
},
|
|||
|
"3d6a8e27074349418cd71c5290f326b5": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"415b9b7ca7254a89b742425f8d8ea152": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"428fed747b004809964f74862290b10e": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"43909ce2bd4f494ca7f48dfa4df64ac4": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_f36b7603103b41afa037b1736ce7987c",
|
|||
|
"IPY_MODEL_0aae27c452e24ff0bf6e87b3393109c2"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_6d8f80f9f3c4430b83cc986c07513c9a"
|
|||
|
}
|
|||
|
},
|
|||
|
"44869506689c4caf9f401df6f3567e1f": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_1be220b3c4b84ce18ff68ce962e9a949",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_a01c8bc77dc44043ad075bf5dfe9cf60",
|
|||
|
"value": " 1000/1000 [09:45<00:00, 1.71it/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"47194203538f443fbdc98751785303f2": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_e42fea6d80ee41fa87eb05bf6619a171",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_6dbd979f74144c668d628d75abd2d6dd",
|
|||
|
"value": " 1000/1000 [19:30<00:00, 1.17s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"480c4b953af740848089472d2b12f54f": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_3b45631e38144ad1859402a2944c936d",
|
|||
|
"IPY_MODEL_ed916bc1bd1242d3a68568625c73417d"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_506b8e8184934f31acfc219574d48aff"
|
|||
|
}
|
|||
|
},
|
|||
|
"483e36286fe34ab2bbbe30683736c09d": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"4aea9d5a2e0a4084807550d0180374ce": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"4b18e248eca649b9bec73bea37b5c11a": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"4c60c8f3fd1844efaccef38f5b81838e": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"4cd46a0bcd284b1db0211389fe3ad7ec": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"506b8e8184934f31acfc219574d48aff": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"539571ba1f43413593c939524bbd2d1b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"5396e1fd60504686b6c9bc64fb4a4d06": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"5728de623f4c4440b9b49f92c2c95910": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_5f12262f399a402a80641ef275c3e6c2",
|
|||
|
"max": 250,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_5b4f4314bc894bc9a810bdf1b622857b",
|
|||
|
"value": 250
|
|||
|
}
|
|||
|
},
|
|||
|
"5893aac2ec524ccf8d307f8fefbe5600": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_0c9dcfe6797b4089a47b1778bfb12dc0",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_dd2540db949d42748cdfe86b49e1f63e",
|
|||
|
"value": " 1000/1000 [24:41<00:00, 1.48s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"5a921281ee6b42bab84f09fe3947a94a": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"5ac9165d021f4013aa0943b6b4d78218": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_f5263bdc9a1143289e04950c75cb57f7",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_fc62d2b357614a41a04a474d45311b2e",
|
|||
|
"value": " 10/10 [1:37:32<00:00, 585.29s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"5b4da417f7c14198857f103fe0ec21fb": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"5b4f4314bc894bc9a810bdf1b622857b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"5b76bc51b4494c0fb95df76ab2fb1d65": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"5d349e33912a4c69b47c5ae49853a34c": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"5de3d949221643deabc9d182baa5c46d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"5f12262f399a402a80641ef275c3e6c2": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"631b21b11c5a45879c4f5070dc0feaf1": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"645160414a094c2d80982b9acaeec514": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_9d8745f319584c6ea64bb9af0bde2790",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_0b9b818e1d404904895a9e55d75a9365",
|
|||
|
"value": " 1000/1000 [02:24<00:00, 6.92it/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"67692bbfc09e45c7a462e5008b9547c5": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"67773255ad0d4f1e9547aa99893c5783": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_ed76467bae354c5197fc851cfee38704",
|
|||
|
"max": 1000,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_e40a6afc8cd3425199bb0787f4b10f6d",
|
|||
|
"value": 1000
|
|||
|
}
|
|||
|
},
|
|||
|
"678138fdac934d97a51537537e6d60cf": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_67692bbfc09e45c7a462e5008b9547c5",
|
|||
|
"max": 1000,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_d543e2ba6e1d4791a834d818d2dfa85d",
|
|||
|
"value": 1000
|
|||
|
}
|
|||
|
},
|
|||
|
"68600582496043389e99e8b8a9aa88ab": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_3459b019efd740fca23d7ba661a7f29b",
|
|||
|
"IPY_MODEL_645160414a094c2d80982b9acaeec514"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_af7f03e4bb454dccbc41f71a3f928966"
|
|||
|
}
|
|||
|
},
|
|||
|
"6bc41a9601fd4e23833e7095a84bcc6a": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"6d8f80f9f3c4430b83cc986c07513c9a": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"6dbd979f74144c668d628d75abd2d6dd": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"6f805de20301483480f3b17d495c7e3f": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_89077b33906c4e73a5af69151ff3a697",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_3ac927282a364bf9a1a3b180772ab840",
|
|||
|
"value": " 1000/1000 [14:57<00:00, 1.11it/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"720237b0357f4d5b9635cb5a975686bf": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_bf6a570468014399b38142fc9a22fd76",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_9f3cfc90bd844f75b29e8a5615e5fd40",
|
|||
|
"value": " 250/250 [56:49<00:00, 13.64s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"7243954bcaa941f49d2e3f81b4ad11c6": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_d46e63ac23794b049ebee823eaf35c7c",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_ce002367634e4ea198e91c66393ea2e9",
|
|||
|
"value": " 250/250 [07:21<00:00, 1.77s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"72b499272b804968bd9732141dc021cb": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"7365309c89e144b1b9235fb9c758aa82": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_929e4d34db9c47b5abeb6e8e6527e40d",
|
|||
|
"max": 1000,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_72b499272b804968bd9732141dc021cb",
|
|||
|
"value": 1000
|
|||
|
}
|
|||
|
},
|
|||
|
"76d7f0a0ba2f444eacaa6ac45eadeb8b": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"771ed83b268a4f66b226abae17711c6f": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"77e5649da409410abd7f1e8363ff16e0": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"77ee6c65243d4aea94c0ca6f324e9600": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_5728de623f4c4440b9b49f92c2c95910",
|
|||
|
"IPY_MODEL_235185543ac74a9984ed589ae4df2c47"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_bb98fe55077e456b8816a15522976bf9"
|
|||
|
}
|
|||
|
},
|
|||
|
"77fa3907e9f94a0ebe7dcae9fc452048": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_f5909acd99cc4cc984d2b5c8433ef031",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_ec1f39d1218246db9625b116bf0046b5",
|
|||
|
"value": " 250/250 [26:53<00:00, 6.45s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"78a2ee48e8744d7dbd4095e7d0de5a0a": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_ef6fc0069caa408681ed24e43b075c31",
|
|||
|
"IPY_MODEL_fd2bd8c066944b2bb3681179d1e773d0"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_9bb82a154d00476d861a90eaf105c994"
|
|||
|
}
|
|||
|
},
|
|||
|
"7cf2f09cbb2e49baa326b070a57135b6": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_8f56f460ce0743adb631f81b47279032",
|
|||
|
"IPY_MODEL_5ac9165d021f4013aa0943b6b4d78218"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_a61b88812be7458e9384797ce7322974"
|
|||
|
}
|
|||
|
},
|
|||
|
"7f00757074234050b67266815b0d60ee": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"803248d7f99146919fc755a33d488aba": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_b76f983e43cd4e71b7c7c062ded7d3d5",
|
|||
|
"IPY_MODEL_47194203538f443fbdc98751785303f2"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_062179ac0d2b48bcbb69c74d05a900e3"
|
|||
|
}
|
|||
|
},
|
|||
|
"8208c8bce4594578aa3931dae0187e41": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"830f327e49fe457f977d507460ceae7c": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"842fe98ab1544003a3410feb0ea2489d": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"87daeb0bd0754c75b5661f7840233ad0": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"89077b33906c4e73a5af69151ff3a697": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"8953c30291cf4f699814869d4b5a09c3": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"8acb2018f7854a839fc18946c1f931f7": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"8d32d1e1e9914826870413592b41b10b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_a09cfde07faa4705ae747aff01a1583d",
|
|||
|
"IPY_MODEL_c8c5a85ed6ce4411b0aa5779c4b7e978"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_be66e21ac4a24a2d81b776f14a3806b0"
|
|||
|
}
|
|||
|
},
|
|||
|
"8f56f460ce0743adb631f81b47279032": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_0bbdb676c6f44fea87b6db3c5d3f4450",
|
|||
|
"max": 10,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_3d6a8e27074349418cd71c5290f326b5",
|
|||
|
"value": 10
|
|||
|
}
|
|||
|
},
|
|||
|
"900a79e911f14c648599db9d99c15dd0": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"91ecd50ff6394107bf31db544b61847a": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"929e4d34db9c47b5abeb6e8e6527e40d": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"94153c16c4a44ed4a0dcccb0a750d361": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_842fe98ab1544003a3410feb0ea2489d",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_3283a19b26ab4019b0df651228ae6bd4",
|
|||
|
"value": " 1000/1000 [15:56<00:00, 1.05it/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"9bb82a154d00476d861a90eaf105c994": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"9d8745f319584c6ea64bb9af0bde2790": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"9f3cfc90bd844f75b29e8a5615e5fd40": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"a01c8bc77dc44043ad075bf5dfe9cf60": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"a0366ad869bc4e1e8237816dc4b3521b": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"a09cfde07faa4705ae747aff01a1583d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_4cd46a0bcd284b1db0211389fe3ad7ec",
|
|||
|
"max": 250,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_539571ba1f43413593c939524bbd2d1b",
|
|||
|
"value": 250
|
|||
|
}
|
|||
|
},
|
|||
|
"a13c646a04d24355a523f240b81c5613": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_678138fdac934d97a51537537e6d60cf",
|
|||
|
"IPY_MODEL_44869506689c4caf9f401df6f3567e1f"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_91ecd50ff6394107bf31db544b61847a"
|
|||
|
}
|
|||
|
},
|
|||
|
"a384224fbe1f4655b65e2176681ea327": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"a61b88812be7458e9384797ce7322974": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"a668e92a47644d52b97309a0b4c5b69b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_30d271d2736a4d978d3e82bfe56eabc2",
|
|||
|
"IPY_MODEL_1d37494429ea4c94b6a04d777e102288"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_4b18e248eca649b9bec73bea37b5c11a"
|
|||
|
}
|
|||
|
},
|
|||
|
"aaa773cbcae14260bdf841d28d29301b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_e58007a175724a93826f54ad010eb3e0",
|
|||
|
"IPY_MODEL_2593f807e9054c629b228302b026fe78"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_a0366ad869bc4e1e8237816dc4b3521b"
|
|||
|
}
|
|||
|
},
|
|||
|
"ae1ad1e6d4414093bbaee30ef5f7c64c": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"af7f03e4bb454dccbc41f71a3f928966": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"b33c81981277493ba2f6d83c20e2e21e": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"b41dc937f8c440c0ae891ce92ea1429e": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"b450702e1ec544ec9a4ea23952810a30": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"b6129ba9f3b84f3b9fdbde3ea309cad2": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_67773255ad0d4f1e9547aa99893c5783",
|
|||
|
"IPY_MODEL_6f805de20301483480f3b17d495c7e3f"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_198803aa7c9a45dbaf88e265562cec93"
|
|||
|
}
|
|||
|
},
|
|||
|
"b76f983e43cd4e71b7c7c062ded7d3d5": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_b33c81981277493ba2f6d83c20e2e21e",
|
|||
|
"max": 1000,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_6bc41a9601fd4e23833e7095a84bcc6a",
|
|||
|
"value": 1000
|
|||
|
}
|
|||
|
},
|
|||
|
"ba293c1ad08b435db5558ddf5f82baaa": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"bb98fe55077e456b8816a15522976bf9": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"bbdb4c77129e47e2bdbc9f595a2aa2db": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"be66e21ac4a24a2d81b776f14a3806b0": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"be8601fb370b4df8a8fe9c4ec895c1f4": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"bf6a570468014399b38142fc9a22fd76": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"c00601a1aea542d6b7e2626f19b8f038": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_2a26535ac3a746dfbcaa1e41d64a622d",
|
|||
|
"IPY_MODEL_5893aac2ec524ccf8d307f8fefbe5600"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_0b06f6925dbf42d48e7e90c4f6c5d999"
|
|||
|
}
|
|||
|
},
|
|||
|
"c27f6a8a581741388b6b6a76097962b9": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"c30365ecb3d84928907be05d41656ecd": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_5a921281ee6b42bab84f09fe3947a94a",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_5b4da417f7c14198857f103fe0ec21fb",
|
|||
|
"value": " 1000/1000 [05:13<00:00, 3.19it/s]"
|
|||
|
}
|
|||
|
},
|
|||
|
"c473432110a24a788d9abf8d15425deb": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"c82d275680734e5289db19cb909ee021": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"c8c5a85ed6ce4411b0aa5779c4b7e978": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_5b76bc51b4494c0fb95df76ab2fb1d65",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_ffce7755cefa4c688d4eab7cd9876674",
|
|||
|
"value": " 250/250 [08:05<00:00, 1.94s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"ca9714a20e7b48939748a81acd7815d7": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"ce002367634e4ea198e91c66393ea2e9": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"ce81663a9ca146aeb8b3e1975bf802ad": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_8acb2018f7854a839fc18946c1f931f7",
|
|||
|
"max": 250,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_415b9b7ca7254a89b742425f8d8ea152",
|
|||
|
"value": 250
|
|||
|
}
|
|||
|
},
|
|||
|
"d0b9276d37814f3e9fbe1caaad9e30d7": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"d46e63ac23794b049ebee823eaf35c7c": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"d543e2ba6e1d4791a834d818d2dfa85d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"d5dd318e95cb4ff6b03aaa25233a5497": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_3d0e43a0a080403b94b64e3e83909e9c",
|
|||
|
"IPY_MODEL_720237b0357f4d5b9635cb5a975686bf"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_be8601fb370b4df8a8fe9c4ec895c1f4"
|
|||
|
}
|
|||
|
},
|
|||
|
"d9605817015940aab431158b5b132ba6": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"d9740797e3754ef385f6f8336cbe6fac": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"dd2540db949d42748cdfe86b49e1f63e": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"e185261a681f4af0bdb2e3823e3891b6": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_7365309c89e144b1b9235fb9c758aa82",
|
|||
|
"IPY_MODEL_13a52a32bbb040309a1c777f87f29bb1"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_76d7f0a0ba2f444eacaa6ac45eadeb8b"
|
|||
|
}
|
|||
|
},
|
|||
|
"e1df1eda8fd946388b80cf7a753bb8d2": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"e1f1bd459a3e4fc29763bac02058bcc4": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"e36ae6801f864a11a5838cf9ed4ba353": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"e40a6afc8cd3425199bb0787f4b10f6d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"e42fea6d80ee41fa87eb05bf6619a171": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"e58007a175724a93826f54ad010eb3e0": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_3948b71f1b314f68b2d11ca915553e30",
|
|||
|
"max": 1000,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_e1f1bd459a3e4fc29763bac02058bcc4",
|
|||
|
"value": 1000
|
|||
|
}
|
|||
|
},
|
|||
|
"e6e7fc5c6cc34762855f85d90369a60f": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_2e7ec1c896904a79ae2924a0c072c9f4",
|
|||
|
"max": 1000,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_ae1ad1e6d4414093bbaee30ef5f7c64c",
|
|||
|
"value": 1000
|
|||
|
}
|
|||
|
},
|
|||
|
"eb69ae54b2794c698af7b7399c566aee": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"eb8c2ad4b54e4322af6eaf9acb2146f9": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_1a44ba624b804903934006950be10946",
|
|||
|
"IPY_MODEL_77fa3907e9f94a0ebe7dcae9fc452048"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_c82d275680734e5289db19cb909ee021"
|
|||
|
}
|
|||
|
},
|
|||
|
"eb9b6424c9f045b19a65d349c8004828": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"ec1f39d1218246db9625b116bf0046b5": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"ed76467bae354c5197fc851cfee38704": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"ed916bc1bd1242d3a68568625c73417d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_2eacf0a522cb42929f123e2b46b24aa3",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_2eeda4cb83aa44ea916d98091e5f2bae",
|
|||
|
"value": " 250/250 [32:03<00:00, 7.69s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"edd5097c68f34aceb7b864e24ccccf4d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_26a0a00f29d749c583b9bb3daf0068f4",
|
|||
|
"max": 1000,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_29b12965e6734707b300c42529f1c434",
|
|||
|
"value": 1000
|
|||
|
}
|
|||
|
},
|
|||
|
"ee3e8f88a4ef45979d7ca5e30ad9c125": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"ef6fc0069caa408681ed24e43b075c31": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_87daeb0bd0754c75b5661f7840233ad0",
|
|||
|
"max": 250,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_631b21b11c5a45879c4f5070dc0feaf1",
|
|||
|
"value": 250
|
|||
|
}
|
|||
|
},
|
|||
|
"ef88874f5bc346c393e6bbb6e18562f7": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_5396e1fd60504686b6c9bc64fb4a4d06",
|
|||
|
"max": 1000,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_21bc74bd84ad4daba065f1772ed662fd",
|
|||
|
"value": 1000
|
|||
|
}
|
|||
|
},
|
|||
|
"efeac8374c38426f906da594f014959d": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "ProgressStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "ProgressStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"bar_color": null,
|
|||
|
"description_width": "initial"
|
|||
|
}
|
|||
|
},
|
|||
|
"f36b7603103b41afa037b1736ce7987c": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "FloatProgressModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "FloatProgressModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "ProgressView",
|
|||
|
"bar_style": "success",
|
|||
|
"description": "100%",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_e1df1eda8fd946388b80cf7a753bb8d2",
|
|||
|
"max": 250,
|
|||
|
"min": 0,
|
|||
|
"orientation": "horizontal",
|
|||
|
"style": "IPY_MODEL_ca9714a20e7b48939748a81acd7815d7",
|
|||
|
"value": 250
|
|||
|
}
|
|||
|
},
|
|||
|
"f5263bdc9a1143289e04950c75cb57f7": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"f5909acd99cc4cc984d2b5c8433ef031": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"f85725cd811c41049ca3b4a1a1d8d52b": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HBoxModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HBoxModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HBoxView",
|
|||
|
"box_style": "",
|
|||
|
"children": [
|
|||
|
"IPY_MODEL_ef88874f5bc346c393e6bbb6e18562f7",
|
|||
|
"IPY_MODEL_2b720265187e48e1a35107e338a9a999"
|
|||
|
],
|
|||
|
"layout": "IPY_MODEL_fae25072555940479f91fe5fe7027ef5"
|
|||
|
}
|
|||
|
},
|
|||
|
"fae25072555940479f91fe5fe7027ef5": {
|
|||
|
"model_module": "@jupyter-widgets/base",
|
|||
|
"model_name": "LayoutModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/base",
|
|||
|
"_model_module_version": "1.2.0",
|
|||
|
"_model_name": "LayoutModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "LayoutView",
|
|||
|
"align_content": null,
|
|||
|
"align_items": null,
|
|||
|
"align_self": null,
|
|||
|
"border": null,
|
|||
|
"bottom": null,
|
|||
|
"display": null,
|
|||
|
"flex": null,
|
|||
|
"flex_flow": null,
|
|||
|
"grid_area": null,
|
|||
|
"grid_auto_columns": null,
|
|||
|
"grid_auto_flow": null,
|
|||
|
"grid_auto_rows": null,
|
|||
|
"grid_column": null,
|
|||
|
"grid_gap": null,
|
|||
|
"grid_row": null,
|
|||
|
"grid_template_areas": null,
|
|||
|
"grid_template_columns": null,
|
|||
|
"grid_template_rows": null,
|
|||
|
"height": null,
|
|||
|
"justify_content": null,
|
|||
|
"justify_items": null,
|
|||
|
"left": null,
|
|||
|
"margin": null,
|
|||
|
"max_height": null,
|
|||
|
"max_width": null,
|
|||
|
"min_height": null,
|
|||
|
"min_width": null,
|
|||
|
"object_fit": null,
|
|||
|
"object_position": null,
|
|||
|
"order": null,
|
|||
|
"overflow": null,
|
|||
|
"overflow_x": null,
|
|||
|
"overflow_y": null,
|
|||
|
"padding": null,
|
|||
|
"right": null,
|
|||
|
"top": null,
|
|||
|
"visibility": null,
|
|||
|
"width": null
|
|||
|
}
|
|||
|
},
|
|||
|
"fc62d2b357614a41a04a474d45311b2e": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
},
|
|||
|
"fd2bd8c066944b2bb3681179d1e773d0": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "HTMLModel",
|
|||
|
"state": {
|
|||
|
"_dom_classes": [],
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "HTMLModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/controls",
|
|||
|
"_view_module_version": "1.5.0",
|
|||
|
"_view_name": "HTMLView",
|
|||
|
"description": "",
|
|||
|
"description_tooltip": null,
|
|||
|
"layout": "IPY_MODEL_ba293c1ad08b435db5558ddf5f82baaa",
|
|||
|
"placeholder": "",
|
|||
|
"style": "IPY_MODEL_8953c30291cf4f699814869d4b5a09c3",
|
|||
|
"value": " 250/250 [22:18<00:00, 5.35s/it]"
|
|||
|
}
|
|||
|
},
|
|||
|
"ffce7755cefa4c688d4eab7cd9876674": {
|
|||
|
"model_module": "@jupyter-widgets/controls",
|
|||
|
"model_name": "DescriptionStyleModel",
|
|||
|
"state": {
|
|||
|
"_model_module": "@jupyter-widgets/controls",
|
|||
|
"_model_module_version": "1.5.0",
|
|||
|
"_model_name": "DescriptionStyleModel",
|
|||
|
"_view_count": null,
|
|||
|
"_view_module": "@jupyter-widgets/base",
|
|||
|
"_view_module_version": "1.2.0",
|
|||
|
"_view_name": "StyleView",
|
|||
|
"description_width": ""
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 1
|
|||
|
}
|