Compare commits

...

No commits in common. "main" and "master" have entirely different histories.
main ... master

7 changed files with 133 additions and 800 deletions

2
.gitattributes vendored
View File

@ -1,2 +0,0 @@
# Auto detect text files and perform LF normalization
* text=auto

344
Boid.pde
View File

@ -6,278 +6,92 @@ class Crumb
PVector position;
Crumb(PVector position)
{
this.position = position;
this.position = position;
}
void draw()
{
fill(255);
noStroke();
circle(this.position.x, this.position.y, CRUMB_SIZE);
fill(255);
noStroke();
circle(this.position.x, this.position.y, CRUMB_SIZE);
}
}
class Boid
{
Crumb[] crumbs = {};
int last_crumb;
float acceleration;
float rotational_acceleration;
KinematicMovement kinematic;
PVector target;
PVector direction;
ArrayList<PVector> waypoints;
boolean stillInRadius = true;
int currentTarget = 0;
Crumb[] crumbs = {};
int last_crumb;
float acceleration;
float rotational_acceleration;
KinematicMovement kinematic;
PVector target;
Boid(PVector position, float heading, float max_speed, float max_rotational_speed, float acceleration, float rotational_acceleration)
{
this.kinematic = new KinematicMovement(position, heading, max_speed, max_rotational_speed);
this.last_crumb = millis();
this.acceleration = acceleration;
this.rotational_acceleration = rotational_acceleration;
}
Boid(PVector position, float heading, float max_speed, float max_rotational_speed, float acceleration, float rotational_acceleration)
{
this.kinematic = new KinematicMovement(position, heading, max_speed, max_rotational_speed);
this.last_crumb = millis();
this.acceleration = acceleration;
this.rotational_acceleration = rotational_acceleration;
}
void update(float dt)
{
if (target != null)
{
// TODO: Implement seek here
//This makes a vector with the direction our boid needs to go to
PVector direction = PVector.sub(target, kinematic.position);
//atan2(direction.y, direction.x) will return the direction we need to go in radians
//print direction we need to go and the direction we are facing right now
//println(atan2(direction.y, direction.x) + " " + normalize_angle_left_right(kinematic.getHeading()));
float directionalThreshold = .1;
//You have to normalize this too or the boid goes the wrong way sometimes
float angleToTarget = normalize_angle_left_right(atan2(direction.y, direction.x) - normalize_angle_left_right(kinematic.getHeading()));
float arrivalThreshold = 150.0;
//This just draws a circle for visual debugging purposes
circle(target.x, target.y, 3);
//prints the angle to the target
//println(angleToTarget);
//if the angle is larger than the threshold in the positive direction, rotate counterclockwise
if (angleToTarget > directionalThreshold) {
kinematic.increaseSpeed(0.0, +1);
//if the angle is smaller than the threshold in the negative direction, rotate clockwise
} else if (angleToTarget < -directionalThreshold) {
kinematic.increaseSpeed(0.0, -1);
//if the angle is within our threshold, stop our rotational velocity by rotating opposite
} else if (directionalThreshold > angleToTarget) {
if (kinematic.getRotationalVelocity() > 0) {
kinematic.increaseSpeed(0.0, -kinematic.getRotationalVelocity());
} else if (kinematic.getRotationalVelocity() < 0) {
kinematic.increaseSpeed(0.0, kinematic.getRotationalVelocity());
}
}
//if the target is outside its arrival threshold, accelerate.
//if the target is inside its arrival threshold, accelerate backwards until the speed is 0.
if (direction.mag() > arrivalThreshold) {
kinematic.increaseSpeed(1, 0);
} else if (direction.mag() < arrivalThreshold) {
//Need more specific code here to handle arrivals correctly
//TODO: change this to slow down less / not at all if the angle to the next target is not large
//This handles starting / stopping if there are more targets
//This ensures that we don't crash because waypoints is null
if (waypoints != null) {
//this checks if there's another target to go to
if (currentTarget + 1 < waypoints.size()) {
//if so, change the speed depending on the angle to the next target
//We can calculate the angle to the next target with the use of two vectors: one from our location to current target, one from current target to next target
//use the dot product of those two vectors; this gives us the angle between them, and we can use that to calculate how much we should slow down
//direction is our boid to target vector
//this is at direction
//current target to next target is here:
PVector currentTargetToNext = PVector.sub(waypoints.get(currentTarget+1), target);
//i'm not sure this is the best way to do this, it might be simpler to calculate the angle, but this should work too
//holds dot product of targets
float dotProductOfTargets = PVector.dot(currentTargetToNext, direction);
//Dividing by both their magnitudes will normalize our result between -1 and 1
dotProductOfTargets = dotProductOfTargets / (currentTargetToNext.mag() * direction.mag());
//Add 1, divide by 2, this will cause our result to be between 0 and 1
//If this is closer to 0, slow down more. If it's closer to 1, slow down less.
dotProductOfTargets = (dotProductOfTargets + 1) / 2;
//use an ideal speed for our boid, to tell it to either speed up or slow down whether it's going faster than this or not
float idealSpeed = (dotProductOfTargets) * 80 + 15;
float maxSpeed = 100 * pow(((PI - abs(angleToTarget)) / PI), 10);
//println(maxSpeed);
if (idealSpeed > maxSpeed) {
idealSpeed = maxSpeed;
}
if (kinematic.getSpeed() < idealSpeed) {
kinematic.increaseSpeed(1, 0);
} else if (kinematic.getSpeed() > idealSpeed) {
kinematic.increaseSpeed(-1, 0);
}
} else {
//if no more targets to check, do the normal calculation
//kinematic.getSpeed() is how fast we're moving, direction.mag() is how far are we from target
//Ideal speed here should be 80 at dist 85, and reduce linearly from there, hitting 0 at 5 units?
//This can be changed later if it isn't good
float idealSpeed = (1 * direction.mag() - 5);
if (idealSpeed < 0) {
idealSpeed = 0;
}
if (kinematic.getSpeed() < idealSpeed) {
kinematic.increaseSpeed(1, 0);
} else if (kinematic.getSpeed() > idealSpeed) {
kinematic.increaseSpeed(-1, 0);
}
}
} else {
//if waypoints is null, do normal things
println("waypoints is null");
//This code should trigger if there's only one target left
//kinematic.getSpeed() is how fast we're moving, direction.mag() is how far are we from target
//Ideal speed here should be 80 at dist 85, and reduce linearly from there, hitting 0 at 5 units?
//This can be changed later if it isn't good
float idealSpeed = 1 * direction.mag() + 10;
//if idealSpeed is "negative" we should just set it to 0
if (idealSpeed < 0) {
idealSpeed = 0;
}
println(idealSpeed);
//use this to know how off the target speed we are, and slow down accordingly
//This will be positive if the ideal speed is higher than current speed, negative if ideal speed is lower.
float speedOffset = (idealSpeed - kinematic.getSpeed());
if (abs(speedOffset) < 1) {
kinematic.increaseSpeed(speedOffset, 0);
} else if (idealSpeed < speedOffset) {
kinematic.increaseSpeed(1, 0);
} else if (idealSpeed > speedOffset) {
kinematic.increaseSpeed(-1, 0);
}
}
}
//drawing a line for testing purposes
//line(kinematic.position.x, kinematic.position.y, kinematic.position.x + direction.x, kinematic.position.y + direction.y);
//handling going to multiple targets
//initial check exists because waypoints will be null for a single target
if (waypoints != null) {
//If within 5 units, move to next target
if (direction.mag() < 5) {
//This ensures that the same target can't trigger moving to the next target twice
if (stillInRadius == false) {
//this ensures that waypoints get cleared after finishing checking all targets
if (currentTarget < waypoints.size() - 1) {
currentTarget++;
} else {
currentTarget = 0;
waypoints = null;
}
}
stillInRadius = true;
if (waypoints != null) {
seek(waypoints.get(currentTarget));
}
} else {
stillInRadius = false;
}
}
}
// place crumbs, do not change
if (LEAVE_CRUMBS && (millis() - this.last_crumb > CRUMB_INTERVAL))
{
this.last_crumb = millis();
this.crumbs = (Crumb[])append(this.crumbs, new Crumb(this.kinematic.position));
if (this.crumbs.length > MAX_CRUMBS)
this.crumbs = (Crumb[])subset(this.crumbs, 1);
}
// do not change
this.kinematic.update(dt);
draw();
}
void draw()
{
for (Crumb c : this.crumbs)
{
c.draw();
}
fill(255);
noStroke();
float x = kinematic.position.x;
float y = kinematic.position.y;
float r = kinematic.heading;
circle(x, y, BOID_SIZE);
// front
float xp = x + BOID_SIZE*cos(r);
float yp = y + BOID_SIZE*sin(r);
// left
float x1p = x - (BOID_SIZE/2)*sin(r);
float y1p = y + (BOID_SIZE/2)*cos(r);
// right
float x2p = x + (BOID_SIZE/2)*sin(r);
float y2p = y - (BOID_SIZE/2)*cos(r);
triangle(xp, yp, x1p, y1p, x2p, y2p);
}
void seek(PVector target)
{
this.target = target;
}
void follow(ArrayList<PVector> waypoints)
{
this.waypoints = waypoints;
seek(waypoints.get(0));
}
void update(float dt)
{
if (target != null)
{
// TODO: Implement seek here
}
// place crumbs, do not change
if (LEAVE_CRUMBS && (millis() - this.last_crumb > CRUMB_INTERVAL))
{
this.last_crumb = millis();
this.crumbs = (Crumb[])append(this.crumbs, new Crumb(this.kinematic.position));
if (this.crumbs.length > MAX_CRUMBS)
this.crumbs = (Crumb[])subset(this.crumbs, 1);
}
// do not change
this.kinematic.update(dt);
draw();
}
void draw()
{
for (Crumb c : this.crumbs)
{
c.draw();
}
fill(255);
noStroke();
float x = kinematic.position.x;
float y = kinematic.position.y;
float r = kinematic.heading;
circle(x, y, BOID_SIZE);
// front
float xp = x + BOID_SIZE*cos(r);
float yp = y + BOID_SIZE*sin(r);
// left
float x1p = x - (BOID_SIZE/2)*sin(r);
float y1p = y + (BOID_SIZE/2)*cos(r);
// right
float x2p = x + (BOID_SIZE/2)*sin(r);
float y2p = y - (BOID_SIZE/2)*cos(r);
triangle(xp, yp, x1p, y1p, x2p, y2p);
}
void seek(PVector target)
{
this.target = target;
}
void follow(ArrayList<PVector> waypoints)
{
// TODO: change to follow *all* waypoints
this.target = waypoints.get(0);
}
}

View File

@ -1,24 +1,7 @@
/// called when "f" is pressed; should instantiate additional boids and start flocking
Boid[] billies = new Boid[8];
void flock()
{
int lasttr = 0;
println("flock called");
float dt = (millis() - lasttr)/1000.0;
lasttr = millis();
PVector target = new PVector(mouseX, mouseY);
for(int i = 0; i < 7; i++)
{
billies[i] = new Boid(new PVector(100 + i*100, 500), BILLY_START_HEADING, BILLY_MAX_SPEED, BILLY_MAX_ROTATIONAL_SPEED, BILLY_MAX_ACCELERATION, BILLY_MAX_ROTATIONAL_ACCELERATION);
println("billy " + billies[i].toString());
billies[i].update(dt);
billies[i].seek(target);
}
}
/// called when "f" is pressed again; should remove the flock

53
Map.pde
View File

@ -58,13 +58,12 @@ class Wall
void draw()
{
strokeWeight(1);
strokeWeight(3);
line(start.x, start.y, end.x, end.y);
if (SHOW_WALL_DIRECTION)
{
PVector marker = PVector.add(PVector.mult(start, 0.2), PVector.mult(end, 0.8));
circle(marker.x, marker.y, 6);
circle(marker.x, marker.y, 5);
}
}
}
@ -115,36 +114,25 @@ class Obstacle
// visible screen (or not too far outside)
boolean isPointInPolygon(PVector point, ArrayList<Wall> walls)
{
int inside = 0;
int outside = 0;
for (int x = 0; x < 5; ++x)
// we create a test point "far away" horizontally
PVector testpoint = PVector.add(point, new PVector(width*2, 0));
// Then we count how often the line from the given point
// to our test point intersects the polygon outline
int count = 0;
for (Wall w: walls)
{
for (int y = 0; y < 5; ++y)
{
if (x + y == 0) continue;
// we create a test point "far away" horizontally
PVector testpoint = PVector.add(point, new PVector(2*width*(x-3), 2*width*(y-2)));
// Then we count how often the line from the given point
// to our test point intersects the polygon outline
int count = 0;
for (Wall w: walls)
{
if (w.crosses(point, testpoint))
count += 1;
}
// If we cross an odd number of times, we started inside
// otherwise we started outside the polygon
// Intersections alternate between enter and exit,
// so if we "know" that the testpoint is outside
// and odd number means we exited one more time
// than we entered.
if (count%2 == 1) inside++;
else outside++;
}
if (w.crosses(point, testpoint))
count += 1;
}
return inside > outside;
// If we cross an odd number of times, we started inside
// otherwise we started outside the polygon
// Intersections alternate between enter and exit,
// so if we "know" that the testpoint is outside
// and odd number means we exited one more time
// than we entered.
return (count%2) == 1;
}
class Map
@ -286,7 +274,7 @@ class Map
}
}
public boolean isReachable(PVector point)
boolean isReachable(PVector point)
{
if (!isPointInPolygon(point, outline)) return false;
for (Obstacle o: obstacles)
@ -295,5 +283,4 @@ class Map
}
return true;
}
}

View File

@ -1,464 +1,43 @@
import java.util.*;
Map origin_map;
// Useful to sort lists by a custom key
import java.util.Comparator;
/// In this file you will implement your navmesh and pathfinding.
/// This node representation is just a suggestion
class Node
{
String id;
ArrayList<Wall> polygon;
ArrayList<Integer> indices = new ArrayList<Integer>();
PVector center;
ArrayList<Node> neighbours = new ArrayList<Node>();
Node(String id, ArrayList<Wall> polygon)
{
this.id = id;
this.polygon = polygon;
center = findCenter();
}
PVector findCenter()
{
int x_avg = 0;
int y_avg = 0;
for(Wall w: polygon) {
x_avg += w.start.x;
y_avg += w.start.y;
}
x_avg /= polygon.size();
y_avg /= polygon.size();
return new PVector(x_avg, y_avg);
}
boolean isNeighbours(Node n)
{
int prev = indices.get(indices.size()-1);
for(Integer i: indices)
{
if (n.indices.contains(i) && n.indices.contains(prev)) return true;
prev = i;
}
return false;
}
int id;
ArrayList<Wall> polygon;
PVector center;
ArrayList<Node> neighbors;
ArrayList<Wall> connections;
}
class SearchFrontier{
Node node;
SearchFrontier prev_frontier;
float distanceToEnd;
float distanceToLast = 0;
SearchFrontier(Node n, SearchFrontier from, PVector end)
{
this.node = n;
this.distanceToEnd = PVector.dist(n.center, end);
if (from != null)
{
this.prev_frontier = from;
this.distanceToLast = PVector.dist(n.center, from.node.center) + from.distanceToLast;
}
}
float heuristicSum()
{
return distanceToEnd + distanceToLast;
}
}
class NavMesh
{
ArrayList<Node> nodes = new ArrayList<Node>();
int rec_stack_count = 0;
int max_depth = 1000;
HashMap<PVector, Integer> vert_lookup_map = new HashMap<PVector, Integer>();
ArrayList<PVector> map_vecs = new ArrayList<PVector>();
PVector midpoint(Node a, Node b)
{
int start = 0;
int end = 0;
int prev_index = a.indices.get(a.indices.size()-1);
for(Integer i: a.indices)
{
if (b.indices.contains(i) && b.indices.contains(prev_index)) {
start = prev_index;
end = i;
break;
}
prev_index = i;
}
PVector start_vect, end_vect;
start_vect = map_vecs.get(start);
end_vect = map_vecs.get(end);
return new PVector(start_vect.x + (end_vect.x - start_vect.x)/2,
start_vect.y + (end_vect.y - start_vect.y)/2);
}
void calculateAdjacencies()
{
for (Node n: nodes)
{
n.neighbours.clear();
}
//for(int i = 0; i < nodes.size(); i++){
//if(i + 1 >= nodes.size()) continue;
//Node a = nodes.get(i);
//Node b = nodes.get(i + 1);
//if(a.isneighbours(b)) a.neighbours.add(b);
//}
for (Node a: nodes)
{
for (Node b: nodes)
{
if (b.equals(a)) continue;
if (a.isNeighbours(b)) a.neighbours.add(b);
}
}
}
void setNodeIndices(Node node)
{
for(Wall w: node.polygon)
{
node.indices.add(vert_lookup_map.get(w.start));
}
}
void splitMap(Node node, int index_1, int index_2)
{
ArrayList<Wall> polygon_1 = new ArrayList<Wall>();
ArrayList<Wall> polygon_2 = new ArrayList<Wall>();
//get the vertex positions from your original node
ArrayList<PVector> node_verts = new ArrayList<PVector>();
for(Wall w: node.polygon)
{
node_verts.add(w.start);
}
//make polygon from index 1 to 2.
for(int i = index_1; i<=index_2; i++)
{
//finishes the polygon
if (i == index_2) {
polygon_1.add(new Wall(node_verts.get(index_2), node_verts.get(index_1)));
break;
}
int next_index = i + 1;
if (next_index > node_verts.size() - 1) next_index = 0;
polygon_1.add(new Wall(node_verts.get(i), node_verts.get(next_index)));
}
int i = index_2;
boolean completedpolygon_2 = false;
while (!completedpolygon_2) {
if (i == index_1) {
polygon_2.add(new Wall(node_verts.get(index_1), node_verts.get(index_2)));
completedpolygon_2 = true;
break;
}
int next_index = i + 1;
if (next_index > node_verts.size() - 1) next_index = 0;
polygon_2.add(new Wall(node_verts.get(i), node_verts.get(next_index)));
i = next_index;
}
Node nodeA = new Node(rec_stack_count+"A", polygon_1);
setNodeIndices(nodeA);
nodes.add(nodeA);
Node nodeB = new Node(rec_stack_count+"B", polygon_2);
setNodeIndices(nodeB);
nodes.add(nodeB);
rec_stack_count++;
if (rec_stack_count == max_depth) return;
if (findReflexVertex(polygon_1) != -1) {
nodes.remove(nodeA);
convexDecomposition(nodeA);
}
if (findReflexVertex(polygon_2) != -1) {
nodes.remove(nodeB);
convexDecomposition(nodeB);
}
}
int findReflexVertex(ArrayList<Wall> polygon)
{
for (int i = 0; i<polygon.size(); i++)
{
// finding the reflex angle by finding where it turns right
int j = i + 1;
// for index out of bounds
if( j >= polygon.size()) j = 0;
if (polygon.get(i).normal.dot(polygon.get(j).direction) >= 0) {
return j;
}
}
return -1;
}
PVector percentage(PVector from, PVector to, float percent)
{
void bake(Map map)
{
//p1 + ((p2 - p1) * percent)
return PVector.mult(PVector.sub(to, from),percent);
/// generate the graph you need for pathfinding
}
boolean intersectsWall(PVector from, PVector to)
{
//threshold to see if wall intersects with 1% margin.
PVector start = PVector.add(from, percentage(from, to, 0.01));
PVector end = PVector.add(from, percentage(from, to, 0.99));
if (!map.isReachable(start)) return true;
//println("Start: " + start);
//println("End: " + end);
for (Wall w : map.walls)
{
if (w.crosses(start, end)) return true;
}
return false;
ArrayList<PVector> findPath(PVector start, PVector destination)
{
/// implement A* to find a path
ArrayList<PVector> result = null;
return result;
}
int joiningVertex(ArrayList<Wall> polygon, int convex_index)
{
//you need the PVectors for this one
ArrayList<PVector> vertices = new ArrayList<PVector>();
for(Wall w: polygon)
{
vertices.add(w.start);
}
PVector index_point = vertices.get(convex_index);
int next_index = convex_index + 1;
if (next_index >= vertices.size()) next_index = 0;
int last_index = convex_index - 1;
if (last_index < 0) last_index = vertices.size() - 1;
for (int i = vertices.size()-1; i>=0; i--)
{
if (i == next_index || i == convex_index || i == last_index) continue;
PVector point_vertex = vertices.get(i);
if (!intersectsWall(index_point, point_vertex))
{
return i;
}
}
return -1;
}
void convexDecomposition(Node node)
{
int convex_index = findReflexVertex(node.polygon);
if (convex_index == -1) return;
int joining_index = joiningVertex(node.polygon, convex_index);
if (joining_index == -1) return;
splitMap(node, min(convex_index, joining_index), max(convex_index, joining_index));
}
//creates a hashmap with key PVector and value Integer
void setVertexMap(Map map)
{
//clear all lookups and map vectors
map_vecs.clear();
vert_lookup_map.clear();
for (int i = 0; i < map.walls.size(); i++)
{
vert_lookup_map.put(map.walls.get(i).start, i);
map_vecs.add(map.walls.get(i).start);
}
}
void bake(Map map)
{
//reset recursions and other values
// to keep track of recursive calls
rec_stack_count = 0;
nodes.clear();
origin_map = map;
vert_lookup_map.clear();
map_vecs.clear();
//make hashmap of vertices
setVertexMap(map);
//create a node with the whole map walls
Node m = new Node("Map", map.outline);
setNodeIndices(m);
void update(float dt)
{
draw();
}
convexDecomposition(m);
calculateAdjacencies();
}
Node nodeFromPoint(PVector p)
{
for (Node n: nodes)
{
if (isPointInPolygon(p,n.polygon))
return n;
}
return null;
}
//Uses A* to find a path from start to dest
ArrayList<PVector> findPath(PVector start, PVector dest)
{
ArrayList<SearchFrontier> frontier = new ArrayList<SearchFrontier>();
ArrayList<Node> visited_nodes = new ArrayList<Node>();
Node node_start = nodeFromPoint(start);
Node node_dest = nodeFromPoint(dest);
SearchFrontier s = new SearchFrontier(node_start, null, node_dest.findCenter());
frontier.add(s);
visited_nodes.add(frontier.get(0).node);
//till the end of of frontier
while (frontier.get(0).node != node_dest)
{
SearchFrontier first_frontier = frontier.get(0);
// add all the neighbours of first
for (Node neighbours: first_frontier.node.neighbours)
{
if (!visited_nodes.contains(neighbours))
{
frontier.add(new SearchFrontier(neighbours, first_frontier, node_dest.findCenter()));
}
}
frontier.remove(0);
//sort via lambda function
frontier.sort((a,b) -> {
if (a.heuristicSum() > b.heuristicSum()) return 1;
else if (a.heuristicSum() < b.heuristicSum()) return -1;
else return 0;
});
//add the removed node to visited list
visited_nodes.add(first_frontier.node);
}
return findDestPath(dest, node_start, frontier);
}
//given a list of frontiers, create a PVector path from the start to dest
ArrayList<PVector> findDestPath(PVector dest, Node node_start, ArrayList<SearchFrontier> genPath)
{
ArrayList<PVector> res = new ArrayList<PVector>();
//add the end
res.add(dest);
SearchFrontier front = genPath.get(0);
while (front.node != node_start) {
PVector midPoint = midpoint(front.node, front.prev_frontier.node);
res.add(midPoint);
//assign previous frontier to start
front = front.prev_frontier;
}
Collections.reverse(res);
return res;
}
void update(float dt)
{
draw();
}
void draw()
{
strokeWeight(3);
for (Node n: nodes)
{
for (Wall w: n.polygon)
{
stroke(255);
strokeWeight(2);
line(w.start.x, w.start.y, w.end.x, w.end.y);
//w.draw();
}
}
for( Wall w: map.outline){
stroke(255,0,0);
strokeWeight(3);
line(w.start.x, w.start.y, w.end.x, w.end.y);
}
}
void draw()
{
/// use this to draw the nav mesh graph
}
}

View File

@ -13,7 +13,7 @@ NavMesh nm = new NavMesh();
boolean entering_path = false;
boolean show_nav_mesh = true;
boolean show_nav_mesh = false;
boolean show_waypoints = false;
@ -22,7 +22,7 @@ boolean show_help = false;
boolean flocking_enabled = false;
void setup() {
size(1000, 800);
size(800, 600);
billy = new Boid(BILLY_START, BILLY_START_HEADING, BILLY_MAX_SPEED, BILLY_MAX_ROTATIONAL_SPEED, BILLY_MAX_ACCELERATION, BILLY_MAX_ROTATIONAL_ACCELERATION);
randomSeed(0);
@ -37,41 +37,14 @@ void mousePressed() {
if (mouseButton == LEFT)
{
if (!entering_path)
if (waypoints.size() == 0)
{
if (nm.nodes.size() > 0) // if map is pressed and nodes are still left
{
waypoints = nm.findPath(billy.kinematic.position, target);
billy.follow(waypoints);
}
else { //target seeking on plain space
billy.seek(target);
}
billy.seek(target);
}
else
else
{
//finish the path
if (nm.nodes.size() > 0) //remaining map if left
{
PVector start_vectoint = waypoints.get(waypoints.size() -1);
ArrayList<PVector> finalRoute = nm.findPath(start_vectoint, target);
for (PVector p: finalRoute)
{
waypoints.add(p);
}
}
else //waypoints to be added
{
waypoints.add(target);
}
waypoints.add(target);
entering_path = false;
billy.follow(waypoints);
}
}

View File

@ -1 +0,0 @@
main=lab1.pde